48,598
Views
505
CrossRef citations to date
0
Altmetric
Research Article

The role of fluorine in medicinal chemistry

Review Article

&
Pages 527-540 | Received 30 Oct 2006, Accepted 23 Feb 2007, Published online: 04 Oct 2008

References

  • Fried J, Sabo EF. 9α-fluoro derivatives of cortisone and hydrocortisone. J Am Chem Soc 1954; 76: 1455–1456
  • Isanbor C, O'Hagan D. Fluorine in medicinal chemistry: a review of anti-cancer agents. J Fluorine Chem 2006; 127: 303–319
  • Shengguo S, Adeboye A. Fluorinated molecules as drugs and imaging agents in the CNS. Curr Top Med Chem 2006; 6: 1457–1464
  • Böhm H, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, Obst-Sander U, Stahl M. Fluorine in medicinal chemistry. Chembiochem 2004; 5: 637–643
  • Kirk KL. Fluorine in medicinal chemistry: Recent therapeutic applications of fluorinated small molecules. J Fluorine Chem 2006; 127: 1013–1029
  • Kirk KL. Selective fluorination in drug design and development: an overview of biochemical rationales. Curr Top Med Chem 2006; 6: 1447–1456
  • Park BK, Kitteringham NR, O'Neill PM. Metabolism of fluorine-containing drugs. Annu Rev Pharmacol Toxicol 2001; 41: 443–470
  • Dugar S, Yumibe N, Clader JW, Vizziano M, Huie K, Heek MV, Compton DS, Davis HR. Metabolism and structure activity data based drug design: Discovery of ( − )SCH 53079 an analog of the potent cholesterol absorption inhibitor ( − )SCH 48461. Bioorg Med Chem Lett 1996; 6: 1271–1274
  • Rosenblum SB, Huynh T, Afonso A, Davis HR, Yumibe N, Clader JW, Burnett DA. Discovery of 1-(4-fluorophenyl)-(3R)-[3-(4-fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4-hydroxyphenyl)-2-azetidinone (SCH 58235): A designed, potent, orally active inhibitor of cholesterol absorption. J Med Chem 1998; 41: 973–980
  • Chua M-S, Shi D-F, Bradshaw TD, Hutchinson I, Shaw PN, Barrett DA, Stanley LA, Stevens MFG. Antitumor benzothiazoles. 7. Synthesis of 2-(4-acylaminophenyl)benzothiazoles and investigations into the role of acetylation in the antitumor activities of the parent amines. J Med Chem 1999; 42: 381–392
  • Kashiyama E, Hutchinson I, Chua M-S, Stinson SF, Phillips LR, Kaur G, Sausville EA, Bradshaw TD, Westwell AD, Stevens MFG. Antitumor benzothiazoles. 8. Synthesis, metabolic formation, and biological properties of the C- and N-oxidation products of antitumor 2-(4-aminophenyl)benzothiazoles. J Med Chem 1999; 42: 4172–4184
  • Hutchinson I, Chua M-S, Browne HL, Trapani V, Bradshaw TD, Westwell AD, Stevens MFG. Antitumor benzothiazoles. 14. Synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl)benzothiazoles. J Med Chem 2001; 44: 1446–1455
  • Brantley E, Trapani V, Alley MC, Hose CD, Bradshaw TD, Stevens MFG, Sausville EA, Stinson SF. Fluorinated 2-(4-amino-3-methylphenyl)benzothiazoles induce CYP1A1 expression, become metabolised, and bind to macromolecules in sensitive human cancer cells. Drug Metab Dispos 2004; 32: 1392–1401
  • Hutchinson I, Jennings SA, Vishnuvajjala BR, Westwell AD, Stevens MFG. Antitumor benzothiazoles. 8. Synthesis, metabolic formation, and biological properties of the C- and N-oxidation products of antitumor 2-(4-aminophenyl)-benzothiazoles. J Med Chem 2002; 45: 744–747
  • Akama T, Ishida H, Shida Y, Kimura U, Gomi K, Saito H, Fuse E, Kobayashi S, Yoda N, Kasai M. Design and synthesis of potent antitumor 5,4′-diaminoflavone derivatives based on metabolic considerations. J Med Chem 1997; 40: 1894–1900
  • Mortimer CG, Wells G, Crochard J-P, Stone EL, Bradshaw TD, Stevens MFG, Westwell AD. Antitumor benzothiazoles. 26. 2-(3,4-Dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines. J Med Chem 2006; 49: 179–185
  • Liehr JG. 2-fluoroestradiol. Separation of estrogenicity from carcinogenicity. Mol Pharmacol 1982; 23: 278–281
  • Stalford AC, Maggs JL, Gilchrist TL, Park BK. The metabolism of 16-fluoroestradiols in vivo: Chemical strategies for restricting the oxidative biotransformations of an estrogen-receptor imaging agent. Steroids 1997; 62: 750–761
  • Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt KM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC-58635, Celecoxib). J Med Chem 1997; 40: 1347–1365
  • Smith DA, van der Warebeemd H, Walker DK. Pharmacokinetics and metabolism in drug design: methods and principles in medicinal chemistry. Wiley-VCH Verlag GmbH, Weinheim 2001; Volume 13: 83
  • Fried J, John V, Szwedo MJ, Chen C, O'Yang C. Synthesis of 10,l0-difluorothromboxane A2, a potent and chemically stable thromboxane agonist. J Am Chem Soc 1989; 111: 4510–4511
  • Fried J, Mitra DK, Nagarajan M, Mehritra MM. 10,10-difluoro-13-dehydroprostacyclin: A chemically and metabolically stabilized potent prostacyclin. J Med Chem 1980; 23: 235
  • Rahimtula AD, O'Brien PJ, Seifried HE, Jerina DM. The mechanism of action of cytochrome P-450. Occurrence of the “NIH-shift” during hydroperoxide-dependent aromatic hydroxylations. Eur J Biochem 1978; 89: 133–141
  • Yagi H, Jerina DM, Kasperek GJ, Bruice TC. A novel mechanism for the NIH-shift. Proc Natl Acad Sci USA 1972; 69: 1985–1986
  • Koerts J, Soffers AEMF, Vervoort J, De Jager A, Rietjens IMCM. Occurrence of the NIH shift upon the cytochrome P450-catalyzed in vivo and in vitro aromatic ring hydroxylation of fluorobenzenes. Chem Res Tox 1998; 11: 503–512
  • Dear GJ, Ismail IM, Mutch PJ, Plumb RS, Davies LH, Sweatman BC. Urinary metabolites of a novel quinoxaline non-nucleoside reverse transcriptase inhibitor in rabbit, mouse and human: identification of fluorine NIH shift metabolites using NMR and tandem MS. Xenobiotica 2000; 30: 407–426
  • van Niel MB, Collins I, Beer MS, Broughton HB, Cheng SKF, Goodacre SC, Heald A, Locker KL, MacLeod AM, Morrison D, Moyes CR, O'Connor D, Pike A, Rowley M, Russell MGN, Sohal B, Stanton JA, Thomas S, Verrier H, Watt AP, Castro JL. Fluorination of 3-(3-(piperidin-1-yl)propyl)indoles and 3-(3-(piperazin-1-yl)propyl)indoles gives selective human 5-HT1D receptor ligands with improved pharmacokinetic profiles. J Med Chem 1999; 42: 2087–2104
  • Castro JL, Street LJ, Guiblin AR, Jelley RA, Russell MGN, Sternfeld F, Beer MS, Stanton JA, Matassa VG. 3-[2-(Pyrrolidin-1-yl)ethyl]indoles and 3-[3-(piperidin-1-yl)propyl]indoles: agonists for the h5-HT1D receptor with high selectivity over the h5-HT1B subtype. J Med Chem 1997; 40: 3497–3500
  • Kokuryo Y, Kawata K, Nakatani T, Kugimiya A, Tamura Y, Kawada K, Matsumoto M, Suzuki R, Kuwabara K, Hori Y, Ohtani M. Synthesis and evaluation of novel fluorinated methotrexate derivatives for application to rheumatoid arthritis treatment. J Med Chem 1997; 40: 3280–3291
  • Qiu J, Stevenson SH, O'Beirne MJ, Silverman RB. 2,6-Difluorophenol as a bioisostere of a carboxylic acid: bioisosteric analogues of γ-aminobutyric acid. J Med Chem 1999; 42: 329–332
  • Stefanidis D, Cho S, Dhe-Paganon S, Jencks WP. Structure-reactivity correlations for reactions of substituted phenolate anions with acetate and formate esters. J Am Chem Soc 1993; 115: 1650–1656
  • DeBernardis JF, Kerkman DJ, Winn M, Bush EN, Arendsen DL, McClellan WJ, Kyncl JJ, Basha FZ. Conformationally defined adrenergic agents. 1. Design and synthesis of novel α2 selective adrenergic agents: Electrostatic repulsion based conformational prototypes. J Med Chem 1985; 28: 1398–1404
  • Kirk KL, Olubajo O, Buchhold K, Lewandowski GA, Gusovsky F, McCulloh D, Daly JW, Creveling CR. Synthesis and adrenergic activity of ring-fluorinated phenylephrines. J Med Chem 1986; 29: 1982–1988
  • Johnston M, Marcotte P, Donovan S, Walsh C. Mechanistic studies with vinylglycine and β-haloaminobutyrates as substrates for cystathionine-synthetase from Salmonella typhimurium. Biochemistry 1979; 18: 1729–1738
  • Muehlbacher M, Poulter CD. Isopentenyl diphosphate: Dimethylallyl diphosphate isomerase. Irreversible inhibition of the enzyme by active site-directed covalent attachment. J Am Chem Soc 1985; 107: 8307–8308
  • Withers SG, Ruptiz K, Street IP. 2-Deoxy-2-fluoro-D-glycosyl fluorides. A new class of specific mechanism-based glycosylase inhibitors. J Biol Chem 1988; 263: 7929–7932
  • Chen MJ, Taylor SD. Synthesis of estrone-3-sulfate analogues bearing novel nonhydrolyzable sulfate mimetics. Tetrahedron Lett 1999; 40: 4149–4152
  • Yokomatsu T, Murano T, Umesue I, Soeda S, Shimeno H, Shibuya S. Synthesis and biological evaluation of α,α,a-difluorobenzylphosphonic acid derivatives as small molecular inhibitors of protein-tyrosine phosphatase 1B. Bioorg Med Chem Lett 1999; 9: 529–532
  • Ramachandran C, Kennedy BP. Protein tyrosine phosphatase 1B: A novel target for type 2 diabetes and obesity. Curr Top in Med Chem 2003; 3: 749–757
  • Holmes CP, Li X, Pan Y, Xu C, Bhandari A, Moody CM, Miguel JA, Ferla SW. Discovery and structure–activity relationships of novel sulfonamides as potent PTP1B inhibitors. Bioorg Med Chem Lett 2005; 15: 4336–4341
  • Burke TR, Ye B, Yan X, Wang S, Jia Z, Chen L, Zhang Z-Y, Barford D. Small molecule interactions with protein-tyrosine phosphatase PTP1B and their use in inhibitor design. Biochemistry 1996; 35: 15989–15996
  • Kim C-Y, Chang JS, Doyon JB, Baird TT, Fierke CA, Jain A, Christianson DW. Contribution of fluorine to protein-ligand affinity in the binding of fluoroaromatic inhibitors to carbonic anhydrase II. J Am Chem Soc 2000; 122: 12125–12134
  • Abeles RH, Alston TA. Enzyme inhibition by fluoro compounds. J Biol Chem 1990; 265: 16705–16708
  • Maren TH, Conroy CW. A new class of carbonic anhydrase inhibitors. J Biol Chem 1993; 268: 26233–26239
  • Riley KE, Merz KM. Effects of fluorine substitution on edge-to-face interaction of the benzene dimer. J Phys Chem 2005; 109: 17752–17756
  • Abbate F, Casini A, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with the perfluorobenzoyl analogue of methazolamide Implications for the drug design of fluorinated inhibitors. J Enz Inhib Med Chem 2003; 18: 303–308
  • Hof F, Scofield DM, Schweizer WB, Diederich F. A weak attractive interaction between organic fluorine and an amide group. Ang Chem Int Ed 2004; 43: 5056–5059
  • Vargas R, Garza J, Dixon DA, Hay BP. How strong is the C–H···O = C hydrogen bond?. J Am Chem Soc 2000; 122: 4750–4755
  • Olsen JA, Banner DW, Seiler P, Sander UO, D'Arcy A, Stihle M, Müller K, Diederich F. A fluorine scan of thrombin inhibitors to map the fluorophilicity/fluorophobicity of an enzyme active site: evidence for C–F···C = O interactions. Ang Chem Int Ed 2003; 42: 2507–2511
  • Domagala JM, Hanna LD, Heifetz CL, Hutt MP, Mich TF, Sanchez JP, Solomon M. New structure-activity relationships of the quinolone antibacterials using the target enzyme. The development and application of a DNA gyrase assay. J Med Chem 1986; 29: 394–404
  • Wright DH, Brown GH, Peterson ML, Rotschafer JC. Application of fluoroquinolone pharmacodynamics. J Antimicrob Chemother 2000; 46: 669–683
  • Appelbaum PC, Hunter PA. The fluoroquinolone antibacterials: Past, present and future perspectives. Int J Antimicrob Agents 2000; 16: 5–15
  • Ledoussal B, Bouzard D, Coroneos E. Potent non-6-fluoro-substituted quinolone antibacterials: synthesis and biological activity. J Med Chem 1992; 31: 198–200
  • Chambers RD. Fluorine in organic chemistry. Blackwell, Oxford 2004; 13
  • Bonasera TA, Ortu G, Rozen Y, Krais R, Freedman NMT, Chisin R, Gazit A, Levitzki A, Mishani E. Potential 18F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase. Nucl Med Biol 2001; 28: 359–374
  • Wiebe LI. PET radiopharmaceuticals for metabolic imaging in oncology. Int Congr Ser 2004; 1264: 53–76
  • Glasspool RM, Evans TRJ. Clinical imaging of cancer metastasis. Eur J Cancer 2000; 36: 1661–1670
  • Varagnolo L, Stokkel MPM, Mazzi U, Pauwels EKJ. 18F-labeled radiopharmaceuticals for PET in oncology, excluding FDG. Nucl Med Biol 2000; 27: 103–112
  • Adam MJ, Wilbur DS. Radiohalogens for imaging and therapy. Chem Soc Rev 2004; 34: 153–163
  • Westera G, Schubiger PA. Functional imaging of physiological processes by positron emission tomography. News Physiol Sci 2003; 175–178
  • Olivier P. Nuclear oncology, a fast growing field of nuclear medicine. Nucl Instr and Meth in Physics Res 2004; 527: 4–8
  • McGoron AJ, Maob X, Georgiou MF, Kuluz JW. Computer phantom study of brain PET glucose metabolism imaging using a rotating SPECT/PET camera. Comput Biol Med 2005; 35: 511–531
  • Herholz K, Heiss WD. Positron emission tomography in clinical neurology. Mol Imaging Biol 2004; 6: 239–269
  • Paans AMJ, vam Waarde A, Elsinga PH, Willemsen ATM, Vaalburg W. Positron emission tomography: The conceptual idea using a multidisciplinary approach. Methods 2002; 27: 195–207
  • Fukuda H, Furumoto S, Iwata R, Kubota K. New radiopharmaceuticals for cancer imaging and biological characterization using PET. Int Cong Ser 2004; 1264: 158–165
  • Wechalekar K, Sharma B, Cook G. PET/CT in oncology—a major advance. Clin Radiol 2005; 60: 1143–1155

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.