5,857
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Advances in assays of matrix metalloproteinases (MMPs) and their inhibitors

REVIEW

, &
Pages 154-167 | Received 24 Mar 2007, Accepted 12 May 2007, Published online: 04 Oct 2008

References

  • Vihinen P, Ala-aho R, Kähäri VM. Matrix metalloproteinases as therapeutic targets in cancer. Curr Cancer Drug Targets 2005; 5: 203–220
  • Loftus IM, Naylor AR, Bell PR, Thompson MM. Matrix metalloproteinases and atherosclerotic plaque instability. Br J Surg 2002; 89: 680–694
  • Leppert D, Lindberg RLP, Kappos L, Leib SL. Matrix metalloproteinases: Multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res Rev 2001; 36: 249–257
  • Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006; 69: 562–573
  • Mannello F, Tonti G, Papa S. Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr Cancer Drug Targets 2005; 5: 285–298
  • Lombard C, Saulnier J, Wallach J. Assays of matrix metalloproteinases (MMPs) activities: A review. Biochimie 2005; 87: 265–272
  • Paemen L, Martens E, Norga K, Masure S, Roets E, Hoogmartens J, Opdenakker G. The gelatinase inhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors. Biochem Pharmacol 1996; 52: 105–111
  • Koritsas VM, Atkinson HJ. An assay for detecting nanogram levels of proteolytic enzymes. Anal Biochem 1995; 227: 22–26
  • Ratnikov B, Deryugina E, Leng J, Marchenko G, Dembrow D, Strongin A. Determination of matrix metalloproteinase activity using biotinylated gelatin. Anal Biochem 2000; 286: 149–155
  • Baragi VM, Shaw BJ, Renkiewicz RR, Kuipers PJ, Welgus HG, Mathrubutham M, Cohen JR, Rao SK. A versatile assay for gelatinases using succinylated gelatin. Matrix Biology 2000; 19: 267–273
  • Ratnikov BI, Deryugina EI, Strongin AY. Gelatin zymography and substrate cleavage assays of matrix metalloproteinase-2 in breast carcinoma cells overexpressing membrane type-1 matrix metalloproteinase. Lab Invest 2002; 82(11)1583–1590
  • Kleiner DE, Stetler-Stevenson WG. Quantitative zymography: detection of picogram quantities of gelatinases. Anal Biochem 1994; 218(2)325–329
  • Leber TM, Balkwill FR. Zymography: A single-step staining method for quantitation of proteolytic activity on substrate gels. Anal Biochem 1997; 249: 24–28
  • Yu W, Woessner JF. Heparin-enhanced zymographic detection of matrilysin and collagenases. Anal Biochem 2001; 293: 38–42
  • Gerlach RF, Demacq C, Jung K, Tanus-Santos JE. Rapid separation of serum does not avoid artificially higher matrix metalloproteinase (MMP)-9 levels in serum versus plasma. Clin Biochem 2007; 40: 119–123
  • Souza-Tarla CD, Uzuelli JA, Machado AA, Gerlach RF, Tanus-Santos JE. Methodological issues affecting the determination of plasma matrix metalloproteinase (MMP)-2 and MMP-9 activities. Clin Biochem 2005; 38: 410–414
  • Gerlach RF, Uzuelli JA, Souza-Tarla CD, Tanus-Santos JE. Effect of anticoagulants on the determination of plasma matrix metalloproteinase (MMP)-2 and MMP-9 activities. Anal Biochem 2005; 344: 147–149
  • Iijima T, Minami Y, Nakamura N, Onizuka M, Morishita Y, Inadome Y, Noguchi M. MMP-2 activation and stepwise progression of pulmonary adenocarcinoma: Analysis of MMP-2 and MMP-9 with gelatin zymography. Pathol Intern 2004; 54: 295–301
  • Makowski GS, Ramsby ML. Calibrating gelatin zymograms with human gelatinase standards. Anal Biochem 1996; 236: 353–356
  • Croall DE, Katherin M, Harold H. Casein zymography of calpains using a 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid-imidazole buffer. Anal Biochem 2002; 304(1)129–132
  • Resa PF, Mira E, Quesada AR. Enhanced detection of casein zymography of matrix metalloproteinases. Anal Biochem 1995; 224: 434–435
  • Gogly B, Groult N, Hornebeck W, Godeau G, Pellat B. Collagen zymography as a sensitive and specific technique for the determination of subpicogram levels of interstitial collagenase. Anal Biochem 1998; 255: 211–216
  • Troeberg L, Nagase H. Measurement of matrix metalloproteinase activities in the medium of cultured synoviocytes using zymography. Meth Mol Biol 2003; 225: 77–87
  • Frederiks WM, Mook OR. Metabolic mapping of proteinase activity with emphasis on in situ zymography of gelatinases: Review and protocols. J Histochem Cytochem 2004; 52(6)711–722
  • George SJ, Johnson JL. In situ zymography. Meth Mol Biol 2001; 151: 411–415
  • Kurschat P, Wickenhauser C, Groth W, Krieg T, Mauch C. Identification of activated matrix metalloproteinase-2 (MMP-2) as the main gelatinolytic enzyme in malignant melanoma by in situ zymography. J Pathol 2002; 197(2)179–187
  • Nemori R, Yamamoto M, Kataoka F, Hashimoto G, Arakatsu H, Shiomi T, Okada Y. Development of in situ zymography to localize active matrix metalloproteinase-7 (matrilysin-1). J Histochem Cytochem 2005; 53(10)1227–1234
  • Galis ZS, Sukhova GK, Libby P. Microscopic localization of active proteases by in situ zymography: Detection of matrix metalloproteinase activity in vascular tissue. FASEB J 1995; 9(10)974–980
  • Mungall BA, Pollitt CC. In situ zymography: topographical considerations. J Biochem Biophys Meth 2001; 47: 169–176
  • Oliver GW, Leferson JD, Stetler-Stevenson WG, Kleiner DE. Quantitative reverse zymography: Analysis of picogram amounts of metalloproteinase inhibitors using gelatinase A and B reverse zymograms. Anal Biochem 1997; 244: 161–166
  • Hawkes SP, Li H, Taniguchi GT. Zymography and reverse zymography for detecting MMPs, and TIMPs. Meth Mol Biol 2001; 151: 399–410
  • Hattori S, Fujisaki H, Kiriyama T, Yokoyama T, Irie S. Real-time zymography and reverse zymography: A method for detecting activities of matrix metalloproteinases and their inhibitors using FITC labeled collagen and casein as substrates. Anal Biochem 2002; 301: 27–34
  • Watanabe K, Hattori S. Real-time dual zymographic analysis of matrix metalloproteinases using fluorescein-isothiocyante-labeled gelatin and texas-red-labeled casein. Anal Biochem 2002; 307: 390–392
  • Crawford BD, Pilgrim DB. Ontogeny and regulation of matrix metalloproteinase activity in the zebrafish embryo by in vitro and in vivo zymography. Dev Biol 2005; 286: 405–414
  • Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 2001; 7: 743–748
  • Bawadi HA, Antunes TM, Shih F, Losso JN. In vitro inhibition of the activation of pro-matrix metalloproteinase 1 (pro-MMP-1) and pro-matrix metalloproteinase 9 (pro-MMP-9) by rice and soybean Bowman-Birk inhibitors. J Agric Food Chem 2004; 52: 4730–4736
  • Verheijen JH, Nieuwenbroek NM, Beekman B, Hanemaaijer R, Verspaget HW, Ronday HK, Bakker AH. Modified proenzymes as artificial substrates for proteolytic enzymes: Colorimetric assay of bacterial collagenase and matrix metalloproteinase activity using modified pro-urokinase. Biochem J 1997; 323(3)603–609
  • Hanemaaijer R, Visser H, Kontiiner Y, Koolwijk P, Verheijen JH. A novel and simple immunocapture assay for determination of getatinase-B (MMP-9) activities in biological fluids: Saliva from patients with Sjogren's syndrome contain increased latent and active gelatinase-B levels. Matrix Biology 1998; 17: 657–665
  • Hanemaaijer R, Sier CF, Visser H, Scholte L, van Lent N, Toet K, Hoekman K, Verheijen JH. MMP-9 activity in urine from patients with various tumors, as measured by a novel MMP activity assay using modified urokinase as a substrate. Ann N Y Acad Sci 1999; 878: 141–149
  • Capper SJ, Verheijen J, Smith L, Sully M, Visser H, Hanemaaijer R. Determination of gelatinase-A (MMP-2) activity using a novel immunocapture assay. Ann N Y Acad Sci 1999; 878: 487–490
  • Yoshida D, Watanabe K, Noha M, Takahashi H, Teramoto A. Suppression of matrix metalloproteinase activity by SI-27: Detection by a new activity assay with S-2444, a specific chromogenic peptide. J Neuro Oncol 2002; 58: 1–11
  • Hao JL, Nagano T, Nakamura M, Kumagai N, Mishima H, Nishida T. Effect of galardin on collagen degradation by pseudomonas aeruginosa. Exp Eye Res 1999; 69: 595–601
  • Kurien BT, Scofield RH. Western blotting. Methods 2006; 38(4)283–293
  • Enric E, Trini T, Manuel R, Senén V, Lluis PJ, Maria B. Use of western blotting filtration to detect UV-cross-linked protein: RNA complexes. Anal Biochem 2006; 353(1)138–140
  • Obata K, Iwata K, Okada Y, Kohrin Y, Ohuchi E, Yoshida S, Shinmei M, Hayakawa T. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 3 (stromelysin-1) using monoclonal antibodies. Clin Chim Acta 1992; 211(1–2)59–72
  • Zhang J, Fujimoto N, Iwata K, Sakai T, Okada Y, Hayakawa T. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 1 (interstitial collagenase) using monoclonal antibodies. Clin Chim Acta 1993; 219(1–2)1–14
  • Fujimoto N, Mouri N, Iwata K, Ohuchi E, Okada Y, Hayakawa T. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 2 (72-kDa gelatinase/type IV collagenase) using monoclonal antibodies. Clin Chim Acta 1993; 221(1–2)91–103
  • Fujimoto N, Zhang J, Iwata K, Shinya T, Okada Y, Hayakawa T. A one-step sandwich enzyme immunoassay for tissue inhibitor of metalloproteinases-2 using monoclonal antibodies. Clin Chim Acta 1993; 220(1)31–45
  • Ohuchi E, Azumano I, Yoshida S, Iwata K, Okada Y. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 7 (matrilysin) using monoclonal antibodies. Clinica Chimica Acta 1996; 244: 181–198
  • Matsuki H, Fujimoto N, Iwata K, Knauper V, Okada Y, Hayakawa T. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 8 (neutrophil collagenase) using monoclonal antibodies. Clinica Chimica Acta 1996; 244: 129–143
  • Wang T, Aoki T, Iwata K, Takata T, Uchida T, KnaÈuper V, Llano E, Okada Y, Bartlett JD. One-step sandwich enzyme immunoassay using monoclonal antibodies for detection of human enamelysin (MMP-20). Eur J Oral Sci 2000; 108: 530–537
  • Aoki T, Yonezawa K, Ohuchi E, Fujimoto N, Iwata K, Shimada T, Shiomi T, Okada Y, Seiki M. Two-step sandwich enzyme immunoassay using monoclonal antibodies for detection of soluble and membrane-associated human membrane type 1-matrix metalloproteinase. J Immunoassay Immunochem 2002; 23(1)49–68
  • Bergmann U, Michaelis J, Oberhoff R, Knäuper V, Beckmann R, Tschesche H. Enzyme linked immunosorbent assays (ELISA) for the quantitative determination of human leukocyte collagenase and gelatinase. J Clin Chem Clin Biochem 1989; 27(6)351–359
  • Yoshioka H, Oyamada I, Usuku G. An assay of collagenase activity using enzyme-linked immunosorbent assay for mammalian collagenase. Anal Biochem 1987; 166(1)172–177
  • Clark IM, Powell LK, Wright JK, Cawston TE, Hazleman BL. Monoclonal antibodies against human fibroblast collagenase and the design of an enzyme-linked immunosorbent assay to measure total collagenase. Matrix 1992; 12(6)475–480
  • Clark IM, Wright JK, Cawston TE, Hazleman BL. Polyclonal antibodies against human fibroblast collagenase and the design of an enzyme-linked immunosorbent assay to measure TIMP-collagenase complex. Matrix 1992; 12(2)108–115
  • Clark IM, Powell LK, Ramsey S, Hazleman BL, Cawston TE. The measurement of collagenase, tissue inhibitor of metalloproteinases (TIMP), and collagenase-TIMP complex in synovial fluids from patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 1993; 36(3)372–379
  • Plumpton TA, Clark IM, Plumpton C, Calvin J, Cawston TE. Development of an enzyme-linked immunosorbent assay to measure total TIMP-1 (free TIMP-1 and TIMP-1 in combination with matrix-metalloproteinases) and measurement of TIMP 1 and CRP in serum. Clin Chim Acta 1995; 240: 137–154
  • Walakovits LA, Moore VL, Bhardwaj N, Gallick GS, Lark MW. Detection of stromelysin and collagenase in synovial fluid from patients with rheumatoid arthritis and posttraumatic knee injury. Arthritis Rheum 1992; 35(1)35–42
  • Doughty JR, Goldberg RL, Ganu V, Melton RA, Hu SI, Di Pasquale G. A stromelysin assay for the assessment of metalloprotease inhibitors on human aggregated proteoglycan. Agents Actions 1993; 39: 151–153
  • Hollander AP, Heathfield TF, Webber C, Iwata Y, Bourne R, Rorabeck C, Poole AR. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest 1994; 93(4)1722–1732
  • Maliszewska M, Mader M, Scholl U, Azeh I, Hardeland R, Felgenhauer K, Beuche W, Weber F. Development of an ultrasensitive enzyme immunoassay for the determination of matrix metalloproteinase-9 (MMP-9) levels in normal human cerebrospinal fluid. J Neuroimmunol 2001; 116: 233–237
  • Lein M, Nowak L, Jung K, Koenig F, Lichtinghagen R, Schnorr D, Loening SA. Analytical aspects regarding the measurement of metalloproteinases and their inhibitors in blood. Clin Biochem 1997; 30(6)491–496
  • Jung K, Gerlach RF, Tanus-Santos JE. Preanalytical pitfalls of blood sampling to measure true circulating matrix metalloproteinase 9 and tissue inhibitors of matrix metalloproteinases. Clin Chim Acta 2006; 373: 180–181
  • Chu Q, Lopez M, Hayashi K, Ionescu M, Billinghurst RC, Johnson KA, Poole AR, Markel MD. Elevation of a collagenase generated type II collagen neoepitope and proteoglycan epitopes in synovial fluid following induction of joint instability in the dog. Osteoarthritis Cartilage 2002; 10(8)662–669
  • Fosang AJ, Stanton H, Little CB, Atley LM. Neoepitopes as biomarkers of cartilage catabolism. Inflamm Res 2003; 52: 277–282
  • Ryzhakova OS, Solov'eva NI. The assay of tissue collagenase activity using fluorescein isothiocyanate labeled collagen. Biomed Khim 2005; 51(4)432–438
  • Steven FS, Lowther DA. Insoluble collagen II. The use of fluorescein labelled polymeric collagen fibrils in a very sensitive assay procedure for enzymes degrading insoluble collagen. Connect Tissue Res 1975; 4(1)7–10
  • Homer KA, Beighton D. Fluorometric determination of bacterial protease activity using fluorescein isothiocyanate-labeled proteins as substrates. Anal Biochem 1990; 191(1)133–137
  • St-Pierre Y, Desrosiers M, Tremblay P, Estève PO, Opdenakker G. Flow cytometric analysis of gelatinase B (MMP-9) activity using immobilized fluorescent substrate on microspheres. Cytometry 1996; 25(4)374–380
  • Kholodovich VV, Kara DI, Gershkovich AA, Kibirev VK, Karabut LV, Klimenko IV, Korneliuk AI. New donor-acceptor pairs for fluorogenic substrates with intramolecular fluorescence energy transfer for thrombin and trypsin. Bioorg Khim 1998; 24(3)179–185
  • Knight CG. Fluorimetric assays of proteolytic enzymes. Meth Enzymol 1995; 248: 18–34
  • Gershkovich AA, Kholodovych VV. Fluorogenic substrates for proteases based on intramolecular fluorescence energy transfer (IFETS). J Biochem Biophys Meth 1996; 33(3)135–162
  • Fields GB. Using fluorogenic peptide substrates to assay matrix metalloproteinases. Methods Mol Biol 2001; 151: 495–518
  • Peppard J, Pham Q, Clark A, Farley D, Sakane Y, Graves R, George J, Norey C. Development of an assay suitable for high-throughput screening to measure matrix metalloprotease activity. Assay Drug Dev Technol 2003; 1(3)425–433
  • Bickett DM, Green MD, Berman J, Dezube M, Howe AS, Brown PJ, Roth JT, Mcgeehan GM. A high throughput fluorogenic substrate for interstitial collagenase (MMP-1) and gelatinase (MMP-9). Anal Biochem 1993; 212(1)58–64
  • Knight CG, Willenbrock F, Murphy G. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett 1992; 296(3)263–266
  • Netzel-Arnett S, Mallya SK, Nagase H, Birkedal-Hansen H, Wart HE. Continuously recording fluorescent assays optimized for five human matrix metalloproteinases. Anal Biochem 1991; 195(1)86–92
  • Beekman B, Drijfhout JW, Bloemhoff W, Ronday HK, Tak PP, TeKoppele JM. Convenient fluorometric assay for matrix metalloproteinase activity and its application in biological media. FEBS Lett 1996; 390: 221–225
  • Beekman B, El B, Drijfhout JW, Ronday HK, TeKoppele JM. Highly increased levels of active stromelysin in rheumatoid synovial fluid determined by a selective fluorogenic assay. FEBS Lett 1997; 418: 305–309
  • Neumann U, Kubota H, Frei K, Ganu V, Leppert D. Characterization of Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2, a fluorogenic substrate with increased specificity constants for collagenases and tumor necrosis factor converting enzyme. Anal Biochem 2004; 328: 166–173
  • George J, Teear ML, Norey CG, Burns DD. Evaluation of an imaging platform during the development of a FRET protease assay. J Biomol Screen 2003; 8(1)72–80
  • Itoh M, Osaki M, Chiba T, Masuda K, Akizawa T, Yoshioka M, Seiki M. Flow injection analysis for measurement of activity of matrix metalloproteinase-7 (MMP-7). J Pharm Biomed Anal 1997; 15: 1417–1426
  • Ambrose WP, Semin DJ, Robbins DL, Orden AV, Kashem MA, Hamilton SA, Nelson RM, Jett JH, Keller RA. Detection system for reaction-rate analysis in a low-volume proteinase-inhibition assay. Anal Biochem 1998; 263: 150–157
  • Geoghegan KF, Emery MJ, Martin WH, McColl AS, Daumy GO. Site-directed double fluorescent tagging of human renin and collagenase (MMP-1) substrate peptides using the periodate oxidation of N-terminal serine. An apparently general strategy for provision of energy-transfer substrates for proteases. Bioconjugate Chem 1993; 4: 537–544
  • Lauer-Fields JL, Kele P, Sui G, Nagase H, Leblanc RM, Fields GB. Analysis of matrix metalloproteinase triple-helical peptidase activity with substrates incorporating fluorogenic L- or D-amino acids. Anal Biochem 2003; 321: 105–115
  • Lauer-Fields JL, Broder T, Sritharan T, Chung L, Nagase H, Fields GB. Kinetic analysis of matrix metalloproteinase activity using fluorogenic triple-helical substrates. Biochemistry 2001; 40: 5795–5803
  • Lauer-Fields JL, Fields GB. Triple-helical peptide analysis of collagenolytic protease activity. Biol Chem 2002; 383(7–8)1095–1105
  • Terato K, Nagai Y, Kawanishi K, Yamamoto S. A rapid assay method of collagenase activity using 14C-labeled soluble collagen as substrate. Biochim Biophys Acta 1976; 445(3)753–762
  • Cawston TE, Barrett AJ. A rapid and reproducible assay for collagenase using [1-14C]acetylated collagen. Anal Biochem 1979; 99(2)340–345
  • Sunada H, Nagai Y. A rapid micro-assay method for gelatinolytic activity using tritium-labeled heat-denatured polymeric collagen as a substrate and its application to the detection of enzymes involved in collagen metabolism. J Biochem(Tokyo) 1980; 87(6)1765–1771
  • Gisslow MT, McBride BC. A rapid sensitive collagenase assay. Anal Biochem 1975; 68(1)70–78
  • Brownell J, Earley W, Kunec E, Morgan BA, Olyslager B, Wahl RC, Houck DR. Comparison of native matrix metalloproteinases and their recombinant catalytic domains using a novel radiometric assay. Arch Biochem Biophys 1994; 314(1)120–125
  • Manicourt DH, Lefebvre V. An assay for matrix metalloproteinases and other proteases acting on proteoglycans, casein, or gelatin. Anal Biochem 1993; 215(2)171–179
  • Johnson-Wint B. A quantitative collagen film collagenase assay for large numbers of samples. Anal Biochem 1980; 104(1)175–181
  • Dean DD, Woessner JF. A sensitive, specific assay for tissue collagenase using telopeptide-free [3H] acetylated collagen. Anal Biochem 1985; 148(1)174–181
  • Matthews DJ, Wells JA. Substrate phage: Selection of protease substrates by monovalent phage display. Science 1993; 260(5111)1113–1117
  • Ohkubo S, Miyadera K, Sugimoto Y, Matsuo K, Wierzba K, Yamada Y. Identification of substrate sequences for membrane type-1 matrix metalloproteinase using bacteriophage peptide display library. Biochem Biophys Res Commun 1999; 266: 308–313
  • Cwirla SE, Peters EA, Barrett RW, Dower WJ. Peptides on phage: A vast library of peptides for identifying ligands. Proc Nati Acad Sci USA 1990; 87: 6378–6382
  • Ding L, Coombs GS, Strandberg L, Navre M, Corey DR, Madison EL. Origins of the specificity of tissue-type plasminogen activator. Proc Natl Acad Sci USA 1995; 92: 7627–7631
  • Smith MM, Shi L, Navre M. Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage peptide display libraries. J Biol Chem 1995; 270(12)6440–6449
  • Deng SJ, Bickett DM, Mitchell JL, Lambert MH, Blackburn RK, Carter HL, 3rd, Neugebauer J, Pahel G, Weiner MP, Moss ML. Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library. J Biol Chem 2000; 275(40)31422–31427
  • Samoylova TI, Morrison NE, Globa LP, Cox NR. Peptide phage display: Opportunities for development of personalized anti-cancer strategies. Anticancer Agents Med Chem 2006; 6(1)9–17
  • Matthias P. Phage display systems and their applications. Appl Microbiol Biotechnol 2006; 70(1)2–11
  • Huber D, Beckwith J. Phage display extends its reach. Nat Biotechnol 2006; 24(7)793–794
  • Rasmussen FH, Yeung N, Kiefer L, Murphy G, Lopez-Otin C, Vitek MP, Moss ML. Use of a multiple-enzyme/multiple-reagent assay system to quantify activity levels in samples containing mixtures of matrix metalloproteinases. Biochemistry 2004; 43(11)2987–2995
  • Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF. Activity-based probes for the proteomic profiling of metalloproteases. PNAS 2004; 101(27)10000–10005
  • Freije JR, Klein T, Ooms JA, Franke JP, Bischoff R. Activity-based matrix metallo-protease enrichment using automated, inhibitor affinity extractions. J Proteome Res 2006; 5: 1186–1194
  • Catterall JB, Cawston TE. Assays of matrix metalloproteinases (MMPs) and MMP inhibitors: Bioassays and immunoassays applicable to cell culture medium, serum, and synovial fluid. Methods Mol Biol 2003; 225: 353–364
  • Quesada AR, Barbacid MM, Mira E, Fernández-Resa P, Márquez G, Aracil M. Evaluation of fluorometric and zymographic methods as activity assays for stromelysins and gelatinases. Clin Exp Metast 1997; 15: 26–32
  • Zucker S, Mancuso P, DiMassimo B, Lysik RM, Conner C, Wu CL. Comparison of techniques for measurement of gelatinases/type IV collagenases: Enzyme-linked immunoassays versus substrate degradation assays. Clin Exp Metast 1994; 12(1)13–23
  • Baker SN, Brauns EB, McCleskey TM, Burrell AK, Baker GA. Fluorescence quenching immunoassay performed in an ionic liquid. Chem Commun (Camb) 2006; 27: 2851–2853
  • Yi CF, Gosiewska A, Burtis D, Geesin J. Incorporation of fluorescent enzyme substrates in agarose gel for in situ zymography. Anal Biochem 2001; 291(1)27–33
  • Le QT, Ohashi A, Hirose S, Katunuma N. Reverse zymography using fluorogenic substrates for protease inhibitor detection. Electrophoresis 2005; 26(6)1038–1045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.