2,663
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and evaluation of antibacterial and antioxidant activity of novel 2-phenyl-quinoline analogs derivatized at position 4 with aromatically substituted 4H-1,2,4-triazoles

, , , , , , , , , & show all
Pages 104-110 | Received 17 Apr 2016, Accepted 08 May 2016, Published online: 19 Jun 2016

References

  • Zitouni GT, Kaplancıklı ZA, Yıldız MT, et al. Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl)acetamido]thio-4H-1,2,4-triazole derivatives. Eur J Med Chem 2005;40:607–13
  • Aher NG, Pore VS, Mishra NN, et al. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg Med Chem Lett 2009;19:759–63
  • Tsukuda Y, Shiratori M, Watanabe H, et al. Modeling, synthesis and biological activity of novel antifungal agents. Bioorg Med Chem Lett 1998;8:1819–24
  • Roberts J, Schock K, Marino S, Andriole VT. Efficacies of two new antifungal agents, the triazole Ravuconazole and the Echinocandin LY-303366, in an experimental model of invasive aspergillosis. Antimicrob Agents Chemother 2000;44:3381–8
  • Kini GD, Robins RK, Avery TL. Synthesis and antitumor activity of ribavirin imidates. A new facile synthesis of ribavirin amidine (1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamidine hydrochloride). J Med Chem 1989;32:1447–9
  • Aswathanarayanappa C, Bheemappa E, Bodke YD, et al. Synthesis and evaluation of antioxidant properties of novel 1,2,4-triazole-based Schiff base heterocycles. Arch Pharm 2013;346:922–30
  • Pokuri S, Singla RK, Bhat VG, Shenoy GG. Insights on the antioxidant potential of 1, 2, 4-triazoles: synthesis, screening & QSAR studies. Curr Drug Metab 2014;15:389–97
  • Maddila S, Kumar AS, Gorle S, et al. Synthesis and antioxidant activity of 1,2,4-triazole linked thieno[2,3-d]pyrimidine derivatives. Lett Drug Des Discov 2014;10:186–93
  • Naito Y, Akahoshi F, Takeda S, et al. Synthesis and pharmacological activity of triazole derivatives inhibiting Eosinophilia. J Med Chem 1996;39:3019–29
  • Kamboj VK, Verma PK, Danda A, Ranjan S. 1,2,4-Triazole derivatives as potential scaffold for anticonvulsant activity. Cent Nerv Syst Agents Med Chem 2015;15:17–22
  • Deng XQ, Song MX, Zheng Y, Quan ZS. Design, synthesis and evaluation of the antidepressant and anticonvulsant activities of triazole containing quinolinones. Eur J Med Chem 2014;73:217–24
  • Takaoka M, Manabe S, Yamoto T, et al. Comparative study of goitrogenic actions of 3-substituted 1,2,4-triazoles in rats. J Vet Med Sci 1994;56:341–6
  • Patel NB, Khan IH, Pannecouque C, Clercq ED. Anti-HIV, antimycobacterial and antimicrobial studies of newly synthesized 1,2,4-triazole clubbed benzothiazoles. Med Chem Res 2013;22:1320–9
  • Sarigol D, Baran AU, Tel BC, et al. Novel thiazolo[3,2-b]-1,2,4-triazoles derived from naproxen with analgesic/anti-inflammatory properties: synthesis, biological evaluation and molecular modeling studies. Bioorg Med Chem 2015;23:2518–28
  • Goss PE, Strasser-Weippl K. Aromatase inhibitors for chemoprevention. Best Pract Res Clin Endocrinol Metab 2004;18:113–30
  • Santen JR. Inhibition of aromatase: insights from recent studies. Steroids 2003;68:559–67
  • Clemons M, Coleman RE, Verma S. Aromatase inhibitors in the adjuvant setting: bringing the gold to a standard. Cancer Treat Rev 2004;30:325–32
  • Orhan PM, Tekiner B, Suzen S. Recent studies of antioxidant quinoline derivatives. Mini Rev Med Chem 2013;13:365–72
  • Savegnago L, Vieira AI, Seus N, et al. Synthesis and antioxidant properties of novel quinolone-chalcogenium compounds. Tet Lett 2013;54:40–4
  • Lam KH, Gambari R, Lee KKH, et al. Preparation of 8-hydroxyquinoline derivatives as potential antibiotics against Staphylococcus aureus. Bioorg Med Chem Lett 2014;24:367–70
  • Bringmann G, Reichert Y, Kane V. The total synthesis of streptonigrin and related antitumor antibiotic natural products. Tetrahedron 2004;60:3539–74
  • Sircar I, Haleen SJ, Burke SE, Barth H. Synthesis and biological activity of 4-(diphenylmethyl)-α-[(4-quinolinyloxy)methyl]-1-piperazineethanol and related compounds. J Med Chem 1992;35:4442–9
  • Senthilkumar P, Dinakaran M, Yogeeswari P, et al. Synthesis and antimycobacterial activities of novel 6-nitroquinolone-3-carboxylic acids. Eur J Med Chem 2009;44:345–58
  • Ko TC, Hour MJ, Lien JC, et al. Synthesis of 4-alkoxy-2-phenylquinoline derivatives as potent antiplatelet agents. Bioorg Med Chem Lett 2001;11:279–82
  • Mikata Y, Mika Y, Shun-ichiro O, et al. Effect of side chain location in (2-aminoethyl)aminomethyl-2-phenylquinolines as antitumor agents. Bioorg Med Chem Lett 1998;8:1243–8
  • Zhang L, Sun F, Li Y, et al. Rapid synthesis of iminosugar derivatives for cell based in situ screening: discovery of “Hit” compounds with anticancer activity. Chem Med Chem 2007;2:1497–594
  • Bromidge SM, Bertani B, Borriello M, et al. 6-[2-(4-Aryl-1-piperazinyl)ethyl]-2H-1,4-benzoxazin-3(4H)-ones: dual-acting 5-HT1 receptor antagonists and serotonin reuptake inhibitors. Bioorg Med Chem Lett 2008;18:5653–6
  • Zhang J, Chiang FI, Wu L, et al. Surprising alteration of antibacterial activity of 5′′-modified neomycin against resistant bacteria. J Med Chem 2008;51:7563–73
  • Elliott JM, Carling RW, Chicchi GG, et al. N′,2-Diphenylquinoline-4-carbohydrazide based NK3 receptor antagonists II. Bioorg Med Chem Lett 2006;16:5752–6
  • Cuny GD, Robin M, Ulyanova NP, et al. Structure–activity relationship study of acridine analogs as haspin and DYRK2 kinase inhibitors. Bioorg Med Chem Lett 2010;20:3491–4
  • Mathew V, Keshavayya J, Vaidya VP, Giles D. Studies on synthesis and pharmacological activities of 3,6-disubstituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and their dihydro analogues. Eur J Med Chem 2007;42:823–40
  • Rizk OH, Mahran MA, El-Khawass SM, et al. Synthesis of some new antimicrobial thiadiazolyl and oxadiazolyl quinoline derivatives. Med Chem Res 2005;14:260–73
  • Hoekstra WJ, Patel HS, Liang X, et al. Discovery of novel quinoline-based estrogen receptor ligands using peptide interaction profiling. J Med Chem 2005;48:2243–7
  • Havaldar FH, Patil AR. Syntheses of 1, 2, 4 triazole derivatives and their biological activity. Eur J Chem 2008;5:347–54
  • Pandey SK, Singh A, Nizamuddin A. Antimicrobial studies of some novel quinazolinones fused with [1,2,4]-triazole, [1,2,4]-triazine and [1,2,4,5]-tetrazine rings. Eur J Med Chem 2009;44:1188–97
  • Upadhayaya RS, Kulkarni GM, Vasireddy NR, et al. Design, synthesis and biological evaluation of novel triazole, urea and thiourea derivatives of quinoline against Mycobacterium tuberculosis. Bioorg Med Chem 2009;17:4681–92
  • Rashad AE, El-Sayed WA, Mohamed AM, Ali MM. Synthesis of new quinoline derivatives as inhibitors of human tumor cells growth. Arch Pharm (Weinheim) 2010;343:440–8
  • Upadhayaya RS, Vandavasi JK, Kardile RA, et al. Novel quinoline and naphthalene derivatives as potent antimycobacterial agents. Eur J Med Chem 2010;45:1854–67
  • Wang Z, Wu B, Kuhen KL, et al. Synthesis and biological evaluations of sulfanyltriazoles as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 2006;16:4174–7
  • Panda SS, Jain SC. Synthesis and QSAR studies of some novel disubstituted 1,2,4-triazoles as antimicrobial agents. Med Chem Res 2014;23:848–61
  • Panda SS, Jain SC. New trifluoromethyl quinolone derivatives: synthesis and investigation of antimicrobial properties. Bioorg Med Chem Lett 2013;23:3225–9
  • Vashist M, Kushwaha K, Kaushik R, Jain SC. Synthesis of medicinally important quinazolines decorated with 1,4-disubstituted-1,2,3-triazoles using CuSO4·5H2O-Et3N catalytic system. RSC Adv 2014;4:23679–84
  • Kushwaha K, Kaushik N, Lata Jain SC. Design and synthesis of novel 2H-chromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials. Bioorg Med Chem Lett 2014;27:1795–801
  • Kushwaha K, Sakhuja R, Jain SC. Synthesis and antimicrobial activity of novel bis-azaphenothiazines. Med Chem Res 2013;22:4459–67
  • Verbanac D, Jain SC, Jain N, et al. An efficient and convenient microwave-assisted chemical synthesis of (thio)xanthones with additional in vitro and in silico characterization. Bioorg Med Chem 2012;20:3180–5
  • Panda SS, Malik R, Chand M, Jain SC. Synthesis and antimicrobial activity of some new 4-triazolylmethoxy-2H-chromen-2-one derivatives. Med Chem Res 2012;21:3750–6
  • Sakhuja R, Panda SS, Khanna L, et al. Design and synthesis of spiro[indole-thiazolidine]spiro[indole-pyrans] as antimicrobial agents. Bioorg Med Chem Lett 2011;21:5465–9
  • Clinical and Laboratory Standards Institute (CLSI) (formerly known as National Committee on Clinical Laboratory Standards–NCCLS) (http://www.clsi.org/) 2009;11:32–40. Available from: http://www.cdc.gov/meningitis/lab-manual/chpt11-antimicrobial-suscept-testing.pdf
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63
  • Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 1995;28:25–30
  • Wolfe KL, Liu RH. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 2007;55:8896–907
  • Stepanić V, Gall TK, Lučić B, et al. Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity. Food Chem 2013;141:1562–70
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 03, Revision C.02. Wallingford (CT): Gaussian Inc.; 2004. Available from: http://www.gaussian.com/g_misc/g03/citation_g03.htm
  • Cancès MT, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 1997;107:3032–41
  • Alongi KS, Shields GC. Theoretical calculations of acid dissociation constants: a review. Annu Rep Comput Chem 2010;6:113–38
  • O’Boyle NM, Banck M, James CA. Open Babel: an open chemical toolbox. J Cheminform 2011;3:33–46
  • Eswaran S, Adhikari AV, Shetty NS. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety. Eur J Med Chem 2009;44:4637–47
  • Patel RV, Park SW. Access to a new class of biologically active quinoline based 1,2,4-triazoles. Eur J Med Chem 2014;71:24–30
  • O’Shea R, Moser HE. Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem 2008;51:2878–1
  • López-Alarcón C, Denicola A. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal Chim Acta 2013;763:1–10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.