2,252
Views
14
CrossRef citations to date
0
Altmetric
Research Article

An evolutionarily conserved allosteric site modulates beta-lactamase activity

, , , &
Pages 33-40 | Received 17 Mar 2016, Accepted 06 Jun 2016, Published online: 28 Jun 2016

References

  • Wilke MS, Lovering AL, Strynadka NC. Beta-lactam antibiotic resistance: a current structural perspective. Curr Opin Microbiol 2005;8:525–33
  • Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 2005;105:395–424
  • Perez F, Endimiani A, Hujer KM, Bonomo RA. The continuing challenge of ESBLs. Curr Opin Pharmacol 2007;7:459–69
  • Pitout JD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008;8:159–66
  • Akyala AI, Alsam S. Extended spectrum beta-lactamase producing strains of Salmonella species – a systematic review. J Microbiol Res 2015;5:57–70
  • Winkler ML, Bonomo RA. SHV-129: a gateway to global suppressors in the SHV β-lactamase family? Mol Biol Evol 2016;33:429–41
  • Oztürk H, Ozkirimli E, Ozgur A. Classification of beta-lactamases and penicillin binding proteins using ligand-centric network models. PLoS One 2015;10:e0117874
  • Budeyri-Gokgoz N, Yalaz S, Avcı NG, et al. Investigation of the in vivo interaction between β-lactamase and its inhibitor protein. Turk J Biol 2015;39:485–92
  • Alaybeyoglu B, Sariyar-Akbulut B, Ozkirimli E. A novel chimeric peptide with antimicrobial activity. J Pept Sci 2015;21:294–301
  • Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 1980;289:321–31
  • Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010;54:969–76
  • Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother 1998;42:1–17
  • Zhang Z, Palzkill T. Dissecting the protein–protein interface between beta-lactamase inhibitory protein and class A beta-lactamases. J Biol Chem 2004;279:42860–6
  • Stec B, Holtz KM, Wojciechowski CL, Kantrowitz ER. Structure of the wild-type TEM-1 beta-lactamase at 1.55 A and the mutant enzyme Ser70Ala at 2.1 A suggest the mode of noncovalent catalysis for the mutant enzyme. Acta Crystallogr D Biol Crystallogr 2005;61:1072–9
  • Fisette O, Morin S, Savard PY, et al. TEM-1 backbone dynamics-insights from combined molecular dynamics and nuclear magnetic resonance. Biophys J 2010;98:637–45
  • Meneksedag D, Dogan A, Kanlikilicer P, Ozkirimli E. Communication between the active site and the allosteric site in class A beta-lactamases. Comput Biol Chem 2013;43:1–10
  • Zou T, Risso VA, Gavira JA, et al. Evolution of conformational dynamics determines the conversion of a promiscuous generalist into a specialist enzyme. Mol Biol Evol 2015;32:132–1
  • Horn JR, Shoichet BK. Allosteric inhibition through core disruption. J Mol Biol 2004;336:1283–91
  • Bowman GR, Geissler PL. Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc Natl Acad Sci USA 2012;109:11681–6
  • Reynolds KA, Thomson JM, Corbett KD, et al. Structural and computational characterization of the SHV-1 beta-lactamase-beta-lactamase inhibitor protein interface. J Biol Chem 2006;281:26745–53
  • Kuzin AP, Nukaga M, Nukaga Y, et al. Structure of the SHV-1 beta-lactamase. Biochemistry 1999;38:5720–7
  • Seidman CE, Struhl K, Sheen J, Jessen T. Introduction of plasmid DNA into cells. Curr Protoc Mol Biol 2001;37:1.8:1.8.1–8.10
  • Nossal NG, Heppel LA. The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J Biol Chem 1966;241:3055–62
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 1976;72:248–54
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–5
  • Blakesley RW, Boezi JA. A new staining technique for proteins in polyacrylamide gels using coomassie brilliant blue G250. Anal Biochem 1977;82:580–2
  • Ashkenazy H, Erez E, Martz E, et al. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010;38:W529–33
  • Celniker G, Nimrod G, Ashkenazy H, et al. ConSurf: using evolutionary data to raise testable hypotheses about protein function. Isr J Chem 2013;53:199–206
  • Johansson MU, Zoete V, Michielin O, Guex N. Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics 2012;13:173
  • The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res 2015;43:D204–12
  • Ball LJ, Kühne R, Schneider-Mergener J, Oschkinat H. Recognition of proline-rich motifs by protein–protein-interaction domains. Angew Chem Int Ed Engl 2005;44:2852–69
  • Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev 2009;22:161–82
  • Powers RA, Morandi F, Shoichet BK. Structure-based discovery of a novel, noncovalent inhibitor of AmpC beta-lactamase. Structure 2002;10:1013–23
  • Green VL, Verma A, Owens RJ, et al. Structure of New Delhi metallo-β-lactamase 1 (NDM-1). Acta Crystallogr F Struct Biol Cryst Commun 2011;67:1160–4
  • Golemi D, Maveyraud L, Vakulenko S, et al. Critical involvement of a carbamylated lysine in catalytic function of class D beta-lactamases. Proc Natl Acad Sci USA 2001;98:14280–5
  • Risso VA, Gavira JA, Mejia-Carmona DF, et al. Hyperstability and substrate promiscuity in laboratory resurrections of precambrian β-lactamases. J Am Chem Soc 2013;135:2899–902
  • Risso VA, Gavira JA, Gaucher EA, Sanchez-Ruiz JM. Phenotypic comparisons of consensus variants versus laboratory resurrections of precambrian proteins. Proteins 2014;82:887–96
  • Tamres M. Aromatic compounds as donor molecules in hydrogen bonding. J Am Chem Soc 1952;74:3375–8
  • Bhattacharyya R, Chakrabarti P. Stereospecific interactions of proline residues in protein structures and complexes. J Mol Biol 2003;331:925–40
  • Kumar M, Balaji PV. C-H…pi interactions in proteins: prevalence, pattern of occurrence, residue propensities, location, and contribution to protein stability. J Mol Model 2014;20:2136
  • Nishio M, Umezawa Y, Fantini J, et al. CH-π hydrogen bonds in biological macromolecules. Phys Chem Chem Phys 2014;16:12648–83
  • Samanta U, Pal D, Chakrabarti P. Environment of tryptophan side chains in proteins. Proteins 2000;38:288–300
  • McGaughey GB, Gagné M, Rappé AK. pi-stacking interactions. Alive and well in proteins. J Biol Chem 1998;273:15458–63
  • Biedermannova L, Riley KE, Berka K, et al. Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane. Phys Chem Chem Phys 2008;10:6350–9
  • Jelsch C, Mourey L, Masson JM, Samama JP. Crystal structure of Escherichia coli TEM1 beta-lactamase at 1.8 A resolution. Proteins 1993;16:364–83
  • Minasov G, Wang X, Shoichet BK. An ultrahigh resolution structure of TEM-1 beta-lactamase suggests a role for Glu166 as the general base in acylation. J Am Chem Soc 2002;124:5333–40
  • Ibuka AS, Ishii Y, Galleni M, et al. Crystal structure of extended spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Biochemistry 2003;42:10634–43
  • Chen Y, Bonnet R, Shoichet BK. The acylation mechanism of CTX-M beta-lactamase at 0.88 A resolution. J Am Chem Soc 2007;129:5378–80
  • Nukaga M, Bethel CR, Thomson JM, et al. Inhibition of class A beta-lactamases by carbapenems: crystallographic observation of two conformations of meropenem in SHV-1. J Am Chem Soc 2008;130:12656–62
  • King DT, Worrall LJ, Gruninger R, Strynadka NC. New Delhi metallo-β-lactamase: structural insights into β-lactam recognition and inhibition. J Am Chem Soc 2012;134:11362–2365
  • Feng H, Ding J, Zhu D, et al. Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins. J Am Chem Soc 2014;136:14694–7
  • Powers RA, Shoichet BK. Structure-based approach for binding site identification on AmpC beta-lactamase. J Med Chem 2002;45:3222–34
  • Chen Y, Minasov G, Roth TA, et al. The deacylation mechanism of AmpC beta-lactamase at ultrahigh resolution. J Am Chem Soc 2006;128:2970–6
  • Johnson JW, Gretes M, Goodfellow VJ, et al. Cyclobutanone analogues of beta-lactams revisited: insights into conformational requirements for inhibition of serine- and metallo-beta-lactamases. J Am Chem Soc 2010;132:2558–60
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graphics 1996;14:33–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.