1,111
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and biological evaluation of novel propargylquinobenzothiazines and their derivatives as potential antiproliferative, anti-inflammatory, and anticancer agents

, , , , , & show all
Pages 83-88 | Received 22 Apr 2016, Accepted 15 Jun 2016, Published online: 12 Jul 2016

References

  • Gupta RR, Kumar M. Synthesis, properties and reactions of phenothiazines. In: Gupta RR, ed. Phenothiazines and 1,4-benzothiazines – chemical and biological aspects. Amsterdam: Elsevier; 1988:1–161
  • Motohashi N, Kawase M, Saito S, Sakagami H. Antitumor potential and possible targets of phenothiazine-related compounds. Curr Drug Targets 2000;1:237–45
  • Motohashi N, Kawase M, Satoh K, Sakagami H. Cytotoxic potential of phenothiazines. Curr Drug Targets 2006;7:1055–66
  • Oz M, Lorke DE, Petroianu GA. Methylene blue and Alzheimer's disease. Biochem Pharmacol 2009;78:927–32
  • Mitchell SC. Phenothiazine: the parent molecule. Curr Drug Targets 2006;7:1181–9
  • Dasgupta A, Dastridara SG, Shirataki Y, Motohashi N. Antibacterial activity of artificial phenothiazines and isoflavones from plants. Top Heterocycl Chem 2008;15:67–132
  • Aaron JJ, Gaye Seye MD, Trajkovska S, Motohashi N. Bioactive phenothiazines and benzo[a]phenothiazines: spectroscopic studies and biological and biomedical properties and applications. Top Heterocycl Chem 2009;16:153–231
  • Sudeshna G, Parimal K. Multiple non-psychiatric effects of phenothiazines: a review. Eur J Pharmacol 2010;648:6–14
  • Pluta K, Morak-Młodawska B, Jeleń M. Recent progress in biological activities of synthesized phenothiazines. Eur J Med Chem 2011;46:3179–89
  • Wesołowska O. Interaction of phenothiazines, stilbenes and flavonoids with multidrug resistance-associated transporters, P-glycoprotein and MRP1. Acta Biochim Polon 2011;58:433–48
  • Ohlow MJ, Moosmann B. Phenothiazine: the seven lives of pharmacology's first lead structure. Drug Discov Today 2011;16:119–31
  • Jaszczyszyn A, Gąsiorowski K, Świątek P, et al. Chemical structure of phenothiazines and their biological activity. Pharmacol Rep 2012;64:16–23
  • Amaral L, Viveiros M. Why thioridazine in combination with antibiotics cures extensively drug-resistant Mycobacterium tuberculosis infections. Int J Antimicrob Agents 2012;39:376–80
  • Fond G, Macgregor A, Attal J, et al. Antipsychotic drugs: pro-cancer or anti-cancer? A systematic review. Med Hypoth 2012;79:38–42
  • Kristiansen JE, Dastidar SG, Palchoudhuri S, et al. Phenothiazines as a solution for multidrug resistant tuberculosis: from the origin to present. Int Microbiol 2015;18:1–12
  • Pluta K, Morak-Młodawska B, Jeleń M. Synthesis and properties of diaza-, triaza- and tetraazaphenothiazines. J Heterocyclic Chem 2009;46:355–91
  • Kumar N, Singh G, Khatoon S, Yadav AK. Synthesis and antimicrobial activities of novel 10H-pyrido[3,2-b][1,4]benzo[b]thiazine ribofuranosides. Indian J Chem 2003;42B:2015–18
  • Abbas EMH, Farghaly TA. Synthesis reactions, and biological activity of 1,4-benzothiazine derivatives. Monatsh Chem 2010;141:661–7
  • Pohjala L, Utt A, Varjak M, et al. Inhibitors of alphavirus entry and replication identified with a stable chikungunya replicon cell line and virus-based assays. PLoS One 2011;6:e28923
  • Kaur P, Chu JJH. Chikungunya virus: an update on antiviral development and challenges. Drug Discov Today 2013;18:969–83
  • Kushwaha K, Sakhuja R, Jain SC. Synthesis and antimicrobial activity of novel bis-azaphenothiazines. Med Chem Res 2013;22:4459–67
  • Bakavoli M, Nikpour M, Rahimizadeh M, et al. Design and synthesis of pyrimido[4,5-b][1,4]benzothiazine derivatives as potent 15-lipoxygenase inhibitors. Bioorg Med Chem 2007;15:2120–6
  • Galarreta BC, Sifuentes R, Carrilllo AK, et al. The use of natural product scaffolds as leads in the search for trypanothione reductase inhibitors. Bioorg Med Chem Lett 2008;16:6689–95
  • Kaneko T, Clark R, Ohi N, et al. Inhibitors of adhesion molecules expression; the synthesis and pharmacological properties of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives. Chem Pharm Bull 2002;50:922–9
  • Kaneko T, Clark R, Ohi N, et al. Piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors. Chem Pharm Bull 2004;52:675–87
  • Zimecki M, Artym J, Kocięba M, et al. The immunosuppressive activities of newly synthesized azaphenothiazines in human and mouse models. Cell Mol Biol Lett 2009;14:622–35
  • Pluta K, Jeleń M, Morak-Młodawska B, et al. Anticancer activity of newly synthesized azaphenothiazines from NCI's anticancer screening bank. Pharmacol Rep 2010;62:319–32
  • Morak-Młodawska B, Pluta K, Matralis AN, Kourounakis AP. Antioxidant activity of newly synthesized 2,7-diazaphenothiazines. Arch Pharm (Weinheim) 2010;343:268–73
  • Morak-Młodawska B, Pluta K, Zimecki M, et al. Synthesis and selected immunological properties of 10-substituted 1,8-diazaphenothiazines. Med Chem Res 2015;24:1408–18
  • Morak-Młodawska B, Pluta K, Latocha M, et al. Synthesis and anticancer and lipophilic properties of 10-dialkylaminobutynyl derivatives of 1,8- and 2,7-diazaphenothiazines. J Enzyme Inhib Med Chem 2015. [Epub ahead of print]. doi: 10.3109/14756366.2015.1101092
  • Kumar M, Sharma K, Samarth RM, Kumar A. Synthesis and antioxidant activity of quinolinobenzothiazinones. Eur J Med Chem 2010;45:4467–72
  • Jeleń M, Pluta K, Zimecki M, et al. Synthesis and selected immunological properties of substituted quino[3,2-b]benzo[1,4]thiazines. Eur J Med Chem 2013;63:444–56
  • Zięba A, Latocha M, Sochanik A. Synthesis and in vitro antiproliferative activity of novel 12(H)-quino[3,4-b][1,4]benzothiazine derivatives. Med Chem Res 2013;22:4158–63
  • Al-Sinjilawi HT, El-Abadelah MM, Mubarak MS, et al. Ahmad, synthesis and antibacterial activity of some novel 4-oxopyrido[2,3-a]phenothiazines. Arch Pharm (Weinheim) 2014;347:861–72
  • Jeleń M, Pluta K, Zimecki M, et al. 6-Substitu-ted 9-fluoroquino[3,2-b]benzo[1,4]thiazines display strong antiproliferative and antitumor properties. Eur J Med Chem 2015;89:411–20
  • Jeleń M, Bavavea EI, Pappa M, et al. Synthesis of quinoline/naphthalene-containing azaphenothiazines and their potent in vitro antioxidant properties. Med Chem Res 2015;24:1725–32
  • Zięba A, Sochanik A, Szurko A, et al. Synthesis and in vitro antiproliferative activity of 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium salts. Eur J Med Chem 2010;45:4733–9
  • Zięba A, Czuba ZP, Król W. Antimicrobial activity of novel 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium salts. Acta Pol Pharm Drug Res 2012;69:1149–52
  • Latocha M, Zięba A, Polaniak R, et al. Molecular effects of amine derivatives of phenothiazine on cancer cells C-32 and SNB-19 in vitro. Acta Pol Pharm 2015;72:909–15
  • Jeleń M, Pluta K, Suwińska K, et al. Quinonaphthothiazines, syntheses, structures and anticancer activities. J Mol Struct 2015;1099:10–16
  • Jeleń M, Pluta K. Synthesis of quinobenzo-1,4-thiazines from diquino-1,4-dithiin and 2,2′-dichloro-3,3′-diquinolinyl disulfide. Heterocycles 2009;78:2325–36
  • Nowak M, Pluta K, Suwińska K, Straver L. Synthesis of new pentacyclic diquinothiazines. J Heterocyclic Chem 2007;44:543–50
  • Jeleń M, Pluta K. Synthesis of 6-aminoalkyldiquino-1,4-thiazines and their acyl and sulfonyl derivatives. Heterocycles 2008;75:859–70
  • Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 1989;119:203–10
  • Hill JM, Speer RJ. Organo-platinum complexes as antitumor agents (review). Anticancer Res 1982;2:173–86
  • Mukerjee N, McGinnis KM, Gnegy ME, Wang KK. Caspase-mediated calcineurin activation contributes to IL-2 release during T cell activation. Biochem Biophys Res Commun 2001;285:1192–9
  • Zhao Y, Lei M, Wang Z, et al. TCR-induced, PKC-θ-mediated NF-κB activation is regulated by a caspase-8-caspase-9-caspase-3 cascade. Biochem Biophys Res Commun 2014;450:526–31
  • Mc Guire C, Elton L, Wieghofer P, et al. Pharmacological inhibition of MALT1 protease activity protects mice in a mouse model of multiple sclerosis. J Neuroinflamm 2014;11:124
  • Zong D, Zielinska-Chomej K, Juntti T, et al. Harnessing the lysosome-dependent antitumor activity of phenothiazines in human small cell lung cancer. Cell Death Dis 2014;5:e1111
  • Cerami A. Tumor necrosis factor as a mediator of shock, cachexia and inflammation. Blood Purif 1993;11:108–17

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.