3,519
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Synthesis and molecular docking studies of some 4-phthalimidobenzenesulfonamide derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors

, , , &
Pages 13-19 | Received 01 Jul 2016, Accepted 16 Aug 2016, Published online: 21 Oct 2016

References

  • Fargo K, Bleiler L. Alzheimer’s association report: 2014 Alzheimer’s disease facts and figures. Alzheimers Dement 2014;10:47–92.
  • Mucke L. Neuroscience: Alzheimer's disease. Nature 2009;461:895–7.
  • Khan I, Ibrar A, Zaib S, et al. Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: Synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis. Bioorg Med Chem 2014;22:6163–73.
  • Khan I, Bakht SM, Ibrar A, et al. Exploration of a library of triazolothiadiazole and triazolothiadiazine compounds as a highly potent and selective family of cholinesterase and monoamine oxidase inhibitors: design, synthesis, X-ray diffraction analysis and molecular docking studies. RSC Adv 2015;5:21249–67.
  • Göçer H, Akincioglu A, Göksu S, et al. Carbonic anhydrase and acetylcholinesterase inhibitory effects of carbamates and sulfamoylcarbamates. J Enzyme Inhib Med Chem 2015;30:316–20.
  • Goedert M, Spillantini MG. A century of Alzheimer's disease. Science 2006;314:777–81.
  • Bolognesi ML, Andrisano V, Bartolini M, et al. Heterocyclic inhibitors of AChE acylation and peripheral sites. Il Farmaco 2005;60:465–73.
  • Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982;217:408–17.
  • Blennow K, Leon MJ, Zetterberg H. Alzheimer's disease. Lancet 2006;368:387–403.
  • Konrath EL, Passos CS, Klein-Júnior LC, Henriques AT. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer's disease. J Pharm Pharmacol 2013;65:1701–25.
  • Shaikh S, Verma A, Siddiqui S, et al. Current acetylcholinesterase-inhibitors: A neuroinformatics perspective. CNS Neurol Disord Drug Targets 2014;13:391–401.
  • Toda N, Kaneko T, Kogen H. Development of an efficient therapeutic agent for Alzheimer's disease: design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter. Chem Pharm Bull 2010;58:273–87.
  • Farina R, Pisani L, Catto M, et al. Structure-based design and optimization of multitarget-directed 2H-chromen-2-one derivatives as potent inhibitors of monoamine oxidase B and cholinesterases. J Med Chem 2015;58:5561–78.
  • Bajda M, Więckowska A, Hebda M, et al. Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci 2013;14:5608–32.
  • Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int J Mol Sci 2014;15:9809–25.
  • Khan MA, Fazal-ur-Rehman S, Hameed A, et al. Regioselective synthesis of novel 2,3,4,4a-tetrahydro-1H-carbazoles and their cholinesterase inhibitory activities. RSC Adv 2015;5:59240–50.
  • Akincioğlu A, Akincioğlu H, Gülçin İ, et al. Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: novel sulfamoylcarbamates and sulfamides derived from acetophenones. Bioorg Med Chem 2015;23:3592–602.
  • Yılmaz S, Akbaba Y, Özgeriş B, et al. Synthesis and inhibitory properties of some carbamates on carbonic anhydrase and acetylcholin esterase. J Enzym Inhib Med Chem 2016;31:1484–91.
  • Scozzavafa A, Kalın P, Supuran CT, et al. The impact of hydroquinone on acetylcholine esterase and certain human carbonic anhydrase isoenzymes (hCA I, II, IX, and XII). J Enzyme Inhib Med Chem 2015;30:941–6.
  • Gülçin İ, Scozzafava A, Supuran CT, et al. The effect of caffeic acid phenethyl ester (CAPE) metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione-s-transferase, lactoperoxidase and carbonic anhydrase ısoenzymes I, II, IX and XII. J Enzym Inhib Med Chem 2015;31:1060–6.
  • Özgeriş B, Göksu S, Köse LP, et al. Acetylcholinesterase and carbonic anhydrase inhibitory properties of novel urea and sulfamide derivatives incorporating dopaminergic 2-aminotetralin scaffolds. Bioorg Med Chem 2016;24:2318–29.
  • Göçer H, Topal F, Topal M, et al. Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. J Enzyme Inhib Med Chem 2016;31:441–7.
  • Sharma U, Kumar P, Kumar N, Singh B. Recent advances in the chemistry of phthalimide analogues and their therapeutic potential. Mini Rev Med Chem 2010;10:678–704.
  • Alptüzün V, Kapkova P, Baumann K, et al. Synthesis and biological activity of pyridinium-type acetylcholinesterase inhibitors. J Pharm Pharmacol 2003;55:1397–404.
  • Si W, Zhang T, Zhang L, et al. Design, synthesis and bioactivity of novel phthalimide derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem Lett 2015;26:2380–2.
  • Ignasik M, Bajda M, Guzior N, et al. Design, synthesis and evaluation of novel 2-(Aminoalkyl)isoindoline-1,3-dione derivatives as dual-binding site acetylcholinesterase inhibitors. Arch. Pharm. (Weinheim) 2012;345:509–16.
  • Zhao Q, Yang G, Mei X, et al. Novel acetylcholinesterase inhibitors: Synthesis and structure–activity relationships of phthalimide alkyloxyphenyl N,N-dimethylcarbamate derivatives. Pestic Biochem Physiol 2009;95:131–4.
  • Alonso D, Dorronsoro I, Rubio L, et al. Donepezil-tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg Med Chem Lett 2005;13:6588–97.
  • Aliabadi A, Foroumadi A, Mohammadi-Farani A, Mahvar MG. Synthesis and evaluation of anti-acetylcholinesterase activity of 2-(2-(4-(2-Oxo-2-phenylethyl)piperazin-1-yl)ethyl)isoindoline-1,3-dione derivatives with potential anti-Alzheimer effects. Iran J Basic Med Sci 2013;16:1049–54.
  • Shah SSA, Rivera G, Ashfaq M. Recent advances in medicinal chemistry of sulfonamides. Rational design as anti-tumoral, anti-bacterial and anti-inflammatory agents. Mini Rev Med Chem 2013;13:70–86.
  • Göçer H, Akıncıoğlu A, Öztaşkın N, et al. Synthesis, antioxidant, and antiacetylcholinesterase activities of sulfonamide derivatives of dopamine-related compounds. Arch Pharm Chem Life Sci 2013;346:783–92.
  • Kang JE, Cho JK, Curtis-Long MJ, et al. Inhibitory evaluation of sulfonamide chalcones on #946;-secretase and acylcholinesterase. Molecules 2013;18:140–53.
  • Abbasi MA, Ahmad S, Rehman A, et al. Sulfonamide derivatives of 2-amino-1-phenylethane as suitable cholinesterase inhibitors. Trop J Pharm Res 2014;13:739–45.
  • Mutahir S, Jonczyk J, Bajda M, et al. Novel biphenyl bis-sulfonamides as acetyl and butyrylcholinesterase inhibitors: synthesis, biological evaluation and molecular modeling studies. Bioorg Chem 2016;64:13–20.
  • Lida K, Kajiwara M. Synthesis of 13C and 15N multilabeled 5-aminolevulinic acid. J Label Compd Radiopharm 2002;45:139–43.
  • Lima LM, Castro P, Machado AL, et al. Synthesis and anti-inflammatory activity of phthalimide derivatives, designed as new thalidomide analogs. Bioorg Med Chem 2002;10:3067–73.
  • Dewar MJS, King FE. Sulphanylamides of some aminopyrazoles and a note on the application of p-phthalimidobenzenesulphonyl chloride to the synthesis of sulfanilamides. J Chem Soc 1945;29:114–16.
  • Timiri AK, Subasri S, Kesherwani M, et al. Synthesis and molecular modeling studies of novel sulfonamide derivatives as dengue virus 2 protease inhibitors. Bioorg Chem 2015;62:74–82.
  • Heinrich DM, Flanagan JU, Jamieson SMF, et al. Synthesis and structure activity relationships for 1-(4-(piperidin-1-ylsulfonyl)phenyl)pyrrolidin-2-ones as novel non-carboxylate inhibitors of the aldo-ketoreductase enzyme AKR1C3. Eur J Med Chem 2013;62:738–44.
  • Cremlyn RJ, Thandi K, Wilson R. Derivatives of cinnamide-4-sulfonyl chloride and p-(phthalimido)benzenesulfonyl chloride. Ind J Chem Sect B 1984;23B:94–6.
  • Ozgun DO, Yamalı C, Gul HI, et al. Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. J Enzym Inhib Med Chem 2016;31:1498–501.
  • Sujayev A, Garibov E, Taslimi P, et al. Synthesis of some tetrahydropyrimidine-5-carboxylates, determination of their metal chelating effects and inhibition profiles against acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase. J Enzym Inhib Med Chem 2016;31:1531–9.
  • Gülçin İ, Scozzafava A, Supuran CT, et al. Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. J Enzym Inhib Med Chem 2016;31:1698–702.
  • Kapkova P, Stiefl N, Surig U, et al. Synthesis, biological activity, and docking studies of new acetylcholinesterase inhibitors of the bispyridinium type. Arch Pharm Pharm Med Chem 2003;336:523–40.
  • Ellman GL, Courtney KD, Andres V, Feather-Stone RM. Biochem Pharmacol 1961;7:88–95.
  • Molecular Operating Environment (2014.09.1) Chemical Computing Group Inc. 1010 Sherbrooke Street West, Suite 91, Montreal H3A 2R7, Canada.
  • Jones G, Willett P, Glen RC, et al. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997;267:727–48.
  • Friesner RA, Banks JL, Murphy RB, et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004;47:1739–49.
  • Cremlyn RJ, Swinbourne FJ, Nunes RJ. Phthalimidebenzenesulphonyl derivates. Ouimica Nova 1985;8:61–2.
  • Arti S K, Pathak D. Synthesis and anticonvulsant screening of 4-phthalimide-N-(4′-substitutedphenylbenzenesulphonamide,4-succinimide-N-(4′-substituted phenyl) benzenesulphonamide. Int J Pharm Tec Res 2011;3:2104–10.
  • Nakanishi K, Solomon PH. Infrared absorption spectroscopy. 2nd ed. San Fransisco: Holden-Day Inc; 1977.
  • Hesse M, Meier H, Zeeh B. Spectroscopic methods in organic chemistry. In: Enders D, Noyori R, Trost BM, eds. Nuclear Magnetic Resonance. New York: Georg Thieme Verlag Stuttgart; 1997.
  • Glave WR, Hansch C. Relationship between lipophilic character and anesthetic activity. J Pharm Sci 1972;61:589–91.