1,332
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Diethylalkylsulfonamido(4-methoxyphenyl)methyl)phosphonate/phosphonic acid derivatives act as acid phosphatase inhibitors: synthesis accompanied by experimental and molecular modeling assessments

, , , , , & show all
Pages 20-28 | Received 25 Mar 2016, Accepted 18 Aug 2016, Published online: 21 Oct 2016

References

  • Mitić N, Smith SJ, Neves A, et al. The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 2006;106:3338–63.
  • Oddie G, Schenk G, Angel N, et al. Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone 2000;27:575–84.
  • Schwender CF, Beers SA, Malloy E, et al. 1-naphthylmethylphosphonic acid derivatives as osteoclastic acid phosphatase inhibitors. Bioorg Med Chem Lett 1995;5:1801–6.
  • Hayman AR, Jones SJ, Boyde A, et al. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 1996;122:3151–62.
  • Schenk G, Mitić N, Hanson GR, Comba P. Purple acid phosphatase: a journey into the function and mechanism of a colorful enzyme. Coord Chem Rev 2013;257:473–82.
  • Bernhardt PV, Schenk G, Wilson GJ. Direct electrochemistry of porcine purple acid phosphatase (uteroferrin). Biochemistry 2004;43:10387–92.
  • Wang DL, Holz RC, David SS, et al. Electrochemical properties of the diiron core of uteroferrin and its anion complexes. Biochemistry 1991;30:8187–94.
  • Beck JL, McConachie LA, Summors AC, et al. Properties of a purple phosphatase from red kidney bean: a zinc-iron metalloenzyme. BBA-Protein Struct M 1986;869:61–8.
  • Leung EW, Teixeira M, Guddat LW, et al. Structure, function and diversity of plant purple acid phosphatases. Curr Topic Plant Biol 2007;8:21–31.
  • Schenk G, Guddat L, Ge Y, et al. Identification of mammalian-like purple acid phosphatases in a wide range of plants. Gene 2000;250:117–25.
  • Cashikar AG, Kumaresan R, Rao NM. Biochemical characterization and subcellular localization of the red kidney bean purple acid phosphatase. Plant Physiol 1997;114:907–15.
  • Nuttleman PR, Roberts RM. Transfer of iron from uteroferrin (purple acid phosphatase) to transferrin related to acid phosphatase activity. J Biol Chem 1990;265:12192–9.
  • Sibille J-C, Doi K, Aisen P. Hydroxyl radical formation and iron-binding proteins. Stimulation by the purple acid phosphatases. J Biol Chem 1987;262:59–62.
  • Räisänen SR, Alatalo SL, Ylipahkala H, et al. Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing. Biochem Biophys Res Commun 2005;331:120–6.
  • Boonen S. Bisphosphonate efficacy and clinical trials for postmenopausal osteoporosis: similarities and differences. Bone 2007;40:S26–31.
  • Halleen JM, Tiitinen SL, Ylipahkala H, et al. Tartrate-resistant acid phosphatase 5b (TRACP 5b) as a marker of bone resorption. Clin Lab 2006;52:499–510.
  • Vella P, McGeary RP, Gahan LR, Schenk G. Tartrate-resistant acid phosphatase: a target for anti-osteoporotic chemotherapeutics. Curr Enzyme Inhib 2010;6:118–29.
  • McGeary RP, Vella P, Mak JY, et al. Inhibition of purple acid phosphatase with alpha-alkoxynaphthylmethylphosphonic acids. Bioorg Med Chem Lett 2009;19:163–6.
  • Susi F, Goldhaber P, Jennings JM. Histochemical and biochemical study of acid phosphatase in resorbing bone in culture. Am J Physiol 1966;211:959–62.
  • Angel NZ, Walsh N, Forwood MR, et al. Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. J Bone Miner Res 2000;15:103–10.
  • Valizadeh M, Schenk G, Nash K, et al. Phosphotyrosyl peptides and analogues as substrates and inhibitors of purple acid phosphatases. Arch Biochem Biophys 2004;424:154–62.
  • Reszka AA, Rodan GA. Bisphosphonate mechanism of action. Curr Rheumatol Rep 2003;5:65–74.
  • Pinkse MW, Merkx M, Averill BA. Fluoride inhibition of bovine spleen purple acid phosphatase: characterization of a ternary enzyme–phosphate–fluoride complex as a model for the active enzyme–substrate–hydroxide complex. Biochemistry 1999;38:9926–36.
  • Crans DC, Simone CM, Holz RC, Que L Jr. Interaction of porcine uterine fluid purple acid phosphatase with vanadate and vanadyl cation. Biochemistry 1992;31:11731–9.
  • Myers JK, Antonelli SM, Widlanski TS. Motifs for metallophosphatase inhibition. J Am Chem Soc 1997;119:3163–4.
  • Mohd-Pahmi SH, Hussein WM, Schenk G, McGeary RP. Synthesis, modelling and kinetic assays of potent inhibitors of purple acid phosphatase. Bioorg Med Chem Lett 2011;21:3092–4.
  • Kaboudin B, Rahmani A. Convenient synthesis of 1-aminoalkylphosphonates under solvent-free conditions. Org Prep Proced Int 2004;36:82–6.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265–75.
  • Feder D, Hussein WM, Clayton DJ, et al. Identification of purple acid phosphatase inhibitors by fragment-based screening: promising new leads for osteoporosis therapeutics. Chem Biol Drug Des 2012;80:665–74.
  • Choughule KV, Barr JT, Jones JP. Evaluation of rhesus monkey and guinea pig hepatic cytosol fractions as models for human aldehyde oxidase. Drug Metab Dispos 2013;41:1852–8.
  • Siah M, Farzaei MH, Ashrafi-Kooshk MR, et al. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: an in vitro study. Bioorg Chem 2016;64:74–84.
  • Pirouzpanah S, Rashidi MR, Delazar A, et al. Inhibitory effects of Ruta graveolens L. extract on guinea pig liver aldehyde oxidase. Chem Pharm Bull 2006;54:9–13.
  • Weiner SJ, Kollman PA, Case DA, et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 1984;106:765–84.
  • Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998;19:1639–62.
  • Solis FJ, Wets RJB. Minimization by random search techniques. Math Oper Res 1981;6:19–30.
  • Hua F, Meijuan F, Xiaoxia L, et al. Syntheses, characterizations, and crystal structures of phosphonopeptides. Heteroat Chem 2007;18:9–15.
  • Marshall K, Nash K, Haussman G, et al. Recombinant human and mouse purple acid phosphatases: expression and characterization. Arch Biochem Biophys 1997;345:230–6.
  • Kilsheimer GS, Axelrod B. Inhibition of prostatic acid phosphatase by alpha-hydroxycarboxylic acids. J Biol Chem 1957;227:879–90.
  • Siddiqua A, Saeed A, Naz R, et al. Purification and biochemical properties of acid phosphatase from Rohu fish liver. Int J Agric Biol 2012;14:223?8.
  • Kaida R, Hayashi T, Kaneko TS. Purple acid phosphatase in the walls of tobacco cells. Phytochemistry 2008;69:2546–51.
  • Lisina K, Piramanayagam S. An in silico study on HIV-1 protease wild-type and mutant with inhibitors from Annona squamosa. Int J Pharm Sci Res 2014;5:1811–18.
  • Shahlaei M, Madadkar-Sobhani A, Mahnam K, et al. Homology modeling of human CCR5 and analysis of its binding properties through molecular docking and molecular dynamics simulation. Biochim Biophys Acta 2011;1808:802–17.