2,385
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Discovery of Klotho peptide antagonists against Wnt3 and Wnt3a target proteins using combination of protein engineering, protein–protein docking, peptide docking and molecular dynamics simulations

, , &
Pages 84-98 | Received 18 Jul 2016, Accepted 20 Aug 2016, Published online: 21 Oct 2016

References

  • Chen CD, Sloane JA, Li H, et al. The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS. J Neurosci 2013;33:1927–39.
  • Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997;390:45–51.
  • Rando TA. Stem cells, ageing and the quest for immortality. Nature 2006;441:1080–6.
  • Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science 2005;309:1829–33.
  • Kuro-o M. Klotho. Pflügers Arch Eur J Physiol 2010;459:333–43.
  • Dubal DB, Yokoyama JS, Zhu L, et al. Life extension factor Klotho enhances cognition. Cell Rep 2014;7:1065–76.
  • Liu H, Fergusson MM, Castilho RM, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science 2007;317:803.
  • Hammad MA, Azam SS. Structural dynamics and inhibitor searching for Wnt-4 protein using comparative computational studies. Drug Des Dev Ther 2015;9:2449–61.
  • Anne SL, Govek EE, Ayrault O, et al. WNT3 inhibits cerebellar granule neuron progenitor proliferation and medulloblastoma formation via MAPK activation. PLoS One 2013;8:1–19.
  • Cunningham TJ, Kumar S, Yamaguchi TP, Duester G. Wnt8a and Wnt3a cooperate in the axial stem cell niche to promote mammalian body axis extension. Dev Dyn 2015;244:797–807.
  • Jiang W, Zhang D, Bursac N, Zhang Y. WNT3 is a biomarker capable of predicting the definitive endoderm differentiation potential of hESCs. Stem Cell Rep 2013;1:46–52.
  • Clevers H, Nusse R. Wnt/?-catenin signaling and disease. Cell 2012;149:1192–205.
  • Chu MLH, Ahn VE, Choi HJ, et al. Structural studies of wnts and identification of an LRP6 binding site. Structure 2013;21:1235–42.
  • Janda CY, Waghray D, Levin AM, et al. Structural basis of Wnt recognition by frizzled. Science 2012;337:59–64.
  • Chen L, Wang K, Shao Y, et al. Structural insight into the mechanisms of Wnt signaling antagonism by Dkk. J Biol Chem 2008;283:23364–70.
  • Cruciat CM, Niehrs C. Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb Perspect Biol 2012;5:a015081.
  • Azam SS, Mirza AH. Role of thumb index fold in Wnt-4 protein and its dynamics through a molecular dynamics simulation study. J Mol Liq 2014;198:313–21.
  • Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008;9:40.
  • Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 2003;31:3381–5.
  • Jacobson MP, Pincus DL, Rapp CS, et al. A hierarchical approach to all-atom protein loop prediction. Proteins Struct Funct Genet 2004;55:351–67.
  • Hooft RW, Sander C, Vriend G. Objectively judging the quality of a protein structure from a Ramachandran plot. Comput Appl Biosci 1997;13:425–30.
  • Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 1993;2:1511–19.
  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993;26:283–91.
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;2:1–7.
  • Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 1995;91:43–56.
  • Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 2004;25:1656–76.
  • Skeel RD, Hardy DJ, Phillips JC. Correcting mesh-based force calculations to conserve both energy and momentum in molecular dynamics simulations. J Comput Phys 2007;225:1–5.
  • Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem 2005;26:1701–18.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996;14:33–8.
  • Comeau SR, Gatchell DW, Vajda S, Camacho C. ClusPro: a fully automated algorithm for protein-protein docking. J Nucleic Acids Res 2004;32:96–9.
  • van Zundert GCP, Rodrigues JPGLM, Trellet M, et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 2015;428:720–5.
  • Weingart U, Lavi Y, Horn D. Data mining of enzymes using specific peptides. BMC Bioinformatics 2009;10:446.
  • Schrodinger, LLC, New York, NY 2016. Schrodinger Release 2016-1: Maestro, version 10.5. New York, NY: Schrodinger, LLC; 2016.
  • Shelley JC, Cholleti A, Frye LL, et al. Epik: a software program for pKa prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 2007;21:681–91.
  • Madhavi Sastry G, Adzhigirey M, Day T, et al. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 2013;27:221–34.
  • Sherman W, Day T, Jacobson MP, et al. Novel procedure for moldeing ligand/receptor induced fit effects. J Med Chem 2006;49:534–53.
  • Salam NK, Adzhigirey M, Sherman W, et al. Structure-based approach to the prediction of disulfide bonds in proteins. Protein Eng Des Sel 2014;27:365–74.
  • Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006;49:6177–96.
  • Farid R, Day T, Friesner RA, Pearlstein RA. New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorg Med Chem 2006;14:3160–73.
  • Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003;423:448–52.
  • Takada R, Satomi Y, Kurata T, et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 2006;11:791–801.
  • Ji YY, Li YQ. The role of secondary structure in protein structure selection. Eur Phys J E Soft Matter 2010;32:103–7.
  • UniProtKB – P56703 (WNT3_HUMAN). [Internet]. [cited 2016 Feb 6]. Available from: http://www.uniprot.org/uniprot/P56703.
  • UniProtKB – P56704 (WNT3A_HUMAN). [Internet]. [cited 2016 Feb 6]. Available from: http://www.uniprot.org/uniprot/P56704.
  • MacDonald BT, Hien A, Zhang X, et al. Disulfide bond requirements for active Wnt ligands. J Biol Chem 2014;289:18122–36.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera ? a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12.
  • Platt RJ, Curtice KJ, Twede VD, et al. From molecular phylogeny towards differentiating pharmacology for NMDA receptor subtypes. Toxicon 2014;81:67–79.
  • Mehi SJ, Maltare A, Abraham CR, King GD. MicroRNA-339 and microRNA-556 regulate Klotho expression in vitro. Age (Dordr) 2014;36:141–9.
  • Pei Y, Brun SN, Markant SL, et al. WNT signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum. J Dev 2012;139:1724–33.
  • Pati S, Gibb SL, Nizzi F, et al. Wnt3a recapitulates the neuroprotective effects of mesenchymal stem cells and promotes neurocognitive recovery in traumatic brain injury. Cytotherapy 2015;17:S16.
  • Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003;423:409–14.
  • Riganti C, Salaroglio IC, Pinzòn-Daza ML, et al. Temozolomide down-regulates Pglycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling. Cell Mol Life Sci 2014;71:499–516.
  • Shim JH. Hair growth-promoting effect of human dermal stem/progenitor cell-derived conditioned medium. Tissue Eng Regen Med Soc 2015;12:268–75.
  • Kwok SC, Mant CT, Hodges RS. Importance of secondary structural specificity determinants in protein folding: insertion of a native beta-sheet sequence into an alpha-helical coiled-coil. Protein Sci 2002;11:1519–31.
  • Mavromoustakos T, Durdagi S, Koukoulitsa C, et al. Strategies in the rational drug design. Curr Med Chem 2011;18:2517–30.
  • Durdagi S, Zhao C, Cuervo JE, Noskov SY. Atomistic models for free energy evaluation of drug binding to membrane proteins. Curr Med Chem 2011;18:2601–11.
  • Leonis G, Avramopoulos A, Salmas RE, et al. Elucidation of conformational states, dynamics, and mechanism of binding in human ?-opioid receptor complexes. J Chem Inf Model 2014;54:2294–308.
  • Salmas RE, Mestanoglu M, Unlu A, et al. Mutated form (G52E) of inactive diphtheria toxin CRM197: molecular simulations clearly display effect of the mutation to NAD binding. Biomol Struct Dyn 2016. [Epub ahead of print]. DOI: 10.1080/07391102.2015.1119060.
  • Ekinci D, Cavdar H, Durdagi S, et al. Structure-activity relationships for the interaction of 5,10-dihydroindeno[1,2-b] indole derivatives with human and bovine carbonic anhydrase isoforms I, II, III, IV and VI. Eur J Med Chem 2012;49:68–73.
  • Mirza SB, Salmas RE, Fatmi MQ, Durdagi S. Virtual screening of eighteen million compounds against dengue virus: combined molecular docking and molecular dynamics simulations study. J Mol Graph Model 2016;66:99–107.