2,020
Views
47
CrossRef citations to date
0
Altmetric
Original Article

Isatin thiazoline hybrids as dual inhibitors of HIV-1 reverse transcriptase

, , , , , , & show all
Pages 130-136 | Received 09 Aug 2016, Accepted 05 Sep 2016, Published online: 21 Oct 2016

References

  • Zhan P, Liu X, Li Z, et al. Design strategies of novel NNRTIs to overcome drug resistance. Curr Med Chem 2009;16:3903–17.
  • Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 2005;48:6523–43.
  • Mehellou Y, De Clercq E. Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J Med Chem 2010;53:521–38.
  • Hirsch MS. Initiating therapy: when to start, what to use. J Infect Dis 2008;197:S252–60.
  • Bornot A, Bauer U, Brown A, et al. Systematic exploration of dual-acting modulators from a combined medicinal chemistry and biology perspective. J Med Chem 2013;56:1197–210.
  • Rosini M. Polypharmacology: the rise of multitarget drugs over combination therapies. Future Med Chem 2014;6:485–7.
  • Besnard J, Hopkins AL, editors. De novo design of ligands against multitarget profiles. Weinheim, Berlin, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2014.
  • Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 2014;57:7874–87.
  • Sluis-Cremer N, Wainberg MA, Schinazi RF. Resistance to reverse transcriptase inhibitors used in the treatment and prevention of HIV-1 infection. Future Microbiol 2015;10:1773–82.
  • Distinto S, Maccioni E, Meleddu R, et al. Molecular aspects of the RT/drug interactions. Perspective of dual inhibitors. Curr Pharm Des 2013;19:1850–9.
  • Distinto S, Esposito F, Kirchmair J, et al. Identification of HIV-1 reverse transcriptase dual inhibitors by a combined shape-, 2D-fingerprint- and pharmacophore-based virtual screening approach. Eur J Med Chem 2012;50:216–29.
  • Corona A, Meleddu R, Esposito F, et al. Ribonuclease H/DNA polymerase HIV-1 reverse transcriptase dual inhibitor: mechanistic studies on the allosteric mode of action of isatin-based compound RMNC6. PLoS One 2016;11:e0147225.
  • Meleddu R, Cannas V, Distinto S, et al. Design, synthesis, and biological evaluation of 1,3-diarylpropenones as dual inhibitors of HIV-1 reverse transcriptase. Chem Med Chem 2014;9:1869–79.
  • Meleddu R, Distinto S, Corona A, et al. (3Z)-3-(2-[4-(aryl)-1,3-thiazol-2-yl]hydrazin-1-ylidene)-2,3-dihydro-1H-indol-2-one derivatives as dual inhibitors of HIV-1 reverse transcriptase. Eur J Med Chem 2015;93:452–60.
  • Agamennone M, Belov DS, Laghezza A, et al. Fragment-based discovery of 5-arylisatin-based inhibitors of matrix metalloproteinases 2 and 13. Chem Med Chem. 2016;11:1892–8.
  • Chen G, Ning Y, Zhao W, et al. Synthesis, neuro-protection and anti-cancer activities of simple isatin Mannich and Schiff bases. Lett Drug Des Discov 2016;13:395–400.
  • Tavari M, Malan SF, Joubert J. Design, synthesis, biological evaluation and docking studies of sulfonyl isatin derivatives as monoamine oxidase and caspase-3 inhibitors. Med Chem Commun 2016;7:1628–39.
  • Rane RA, Karunanidhi S, Jain K, et al. A recent perspective on discovery and development of diverse therapeutic agents inspired from isatin alkaloids. Curr Top Med Chem (Sharjah, United Arab Emirates) 2016;16:1262–89.
  • Ozgun DO, Yamali C, Gul HI, et al. Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. J Enzyme Inhib Med Chem. 2016;31:1498–1501.
  • Corona A, Di Leva FS, Thierry S, et al. Identification of highly conserved residues involved in inhibition of Hiv-1 Rnase H function by diketo acid derivatives. Antimicrob Agents Chemother 2014;58:6101–10, 11.
  • Suchaud V, Bailly F, Lion C, et al. Development of a series of 3-hydroxyquinolin-2(1H)-ones as selective inhibitors of HIV-1 reverse transcriptase associated RNase H activity. Bioorg Med Chem Lett 2012;22:3988–92.
  • Schrödinger LLC. Maestro GUI. New York, NY: Schrödinger LLC; 2015.
  • Pervez H, Ahmad M, Hadda TB, et al. Synthesis and fluorine-mediated interactions in methanol-encapsulated solid state self-assembly of an isatin-thiazoline hybrid. J Mol Struct 2015;1098:124–9.
  • Mohamadi F, Richards NGJ, Guida WC, et al. Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 1990;11:440–67.
  • Halgren T. Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 1996;17:520–52.
  • Still WC, Tempczyk A, Hawley RC, Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 1990;112:6127–9.
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000;28:235–42.
  • Ren JS, Esnouf R, Garman E, et al. High-resolution structures of HIV-1 rt from 4 RT-inhibitor complexes. Nat Struct Biol 1995;2:293–302.
  • Das K, Bauman JD, Clark AD, et al. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations. Proc Natl Acad Sci U S A 2008;105:1466–71.
  • Ren JS, Nichols C, Bird LE, et al. Binding of the second generation non-nucleoside inhibitor S-1153 to HIV-1 reverse transcriptase involves extensive main chain hydrogen bonding. J Biol Chem 2000;275:14316–20.
  • Das K, Bauman JD, Rim AS, et al. Crystal structure of tert-butyldimethylsilyl-spiroaminooxathioledioxide-thymine (TSAO-T) in complex with HIV-1 reverse transcriptase (RT) redefines the elastic limits of the non-nucleoside inhibitor-binding pocket. J Med Chem 2011;54:2727–37.
  • Pata JD, Stirtan WG, Goldstein SW, Steitz TA. Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors. Proc Natl Acad Sci USA 2004;101:10548–53.
  • Himmel DM, Maegley KA, Pauly TA, et al. Structure of HIV-1 reverse transcriptase with the inhibitor beta-Thujaplicinol bound at the RNase H active site. Structure (London, England: 1993) 2009;17:1625–35.
  • Schrödinger LLC. QMPolarized protocol. New York, NY: Schrodinger Suite; 2012.
  • McDonald DQ, Still WC. AMBER torsional parameters for the peptide backbone. Tetrahedron Lett 1992;33:7743–6.
  • Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000;33:889–97.
  • InteLigand Software GmbH. LigandScout 4.0. Maria Enzersdorf, Austria: Maria Enzersdorf; 2015.
  • PyMOL. Version 1.5.0.4 ed molecular graphics system. New York, NY: Schrödinger, LLC.
  • Cho AE, Guallar V, Berne BJ, Friesner R. Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem 2005;26:915–31.
  • Huang S-Y, Zou X. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins 2007;66:399–421.
  • Paris KA, Haq O, Felts AK, et al. Conformational landscape of the human immunodeficiency virus type 1 reverse transcriptase non-nucleoside inhibitor binding pocket: lessons for inhibitor design from a cluster analysis of many crystal structures. J Med Chem 2009;52:6413–20.
  • Ding JP, Das K, Moereels H, et al. Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors. Nat Struct Biol 1995;2:407–15.
  • Das K, Lewi PJ, Hughes SH, Arnold E. Crystallography and the design of anti-AIDS drugs: conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Prog Biophys Mol Biol 2005;88:209–31.
  • Felts AK, Labarge K, Bauman JD, et al. Identification of alternative binding sites for inhibitors of HIV-1 ribonuclease H through comparative analysis of virtual enrichment studies. J Chem Inform Model 2011;51:1986–98.