6,476
Views
137
CrossRef citations to date
0
Altmetric
Research Article

Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: phytochemical characterization, biological profile, and computational studies

, , , , , , & show all
Pages 153-168 | Received 01 Aug 2016, Accepted 28 Sep 2016, Published online: 18 Jan 2017

References

  • Abuajah CI, Ogbonna AC, Osuji CM. Functional components and medicinal properties of food: a review. J Food Sci Technol 2014;52:2522–9.
  • Mašković PZ, Diamanto LD, Vujic JM, et al. Onosma aucheriana: a source of biologically active molecules for novel food ingredients and pharmaceuticals. J Funct Foods 2015;19:479–86.
  • Lapenna S, Gemen R, Wollgast J, et al. Assessing herbal products with health claims. Crit Rev Food Sci Nutr 2015;55:1918–28.
  • Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv (Elsevier BV) 2015;33:1582–614.
  • Oroian M, Escriche I. Antioxidants: characterization, natural sources, extraction and analysis. Food Res Int Elsevier B.V 2015;74:10–36.
  • Shahidi F, Zhong Y. Measurement of antioxidant activity. J Funct Foods 2015;18:757–81.
  • Alshikh N, de Camargo AC, Shahidi F. Phenolics of selected lentil cultivars: antioxidant activities and inhibition of low-density lipoprotein and DNA damage. J Funct Foods (Elsevier Ltd) 2015;18:1022–38.
  • Pereira DM, Valentão P, Pereira JA, Andrade PB. Phenolics: from chemistry to biology. Molecules 2009;14:2202–11.
  • de Camargo AC, Regitano-d’Arce MAB, Gallo CR, Shahidi F. Gamma-irradiation induced changes in microbiological status, phenolic profile and antioxidant activity of peanut skin. J Funct Foods (Elsevier Ltd) 2015;12:129–43.
  • Hamaguchi T, Ono K, Murase A, Yamada M. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-beta aggregation pathway. Am J Pathol Am Soc Invest Pathol 2009;175:2557–65.
  • Xiao J. Natural polyphenols and diabetes: understanding their mechanism of action. Curr Med Chem 2014;21:1–2.
  • Xiao J, Högger P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem 2015;22:23–38.
  • Safer AM. Hepatotoxicity induced by the anti-oxidant food additive, butylated hydroxytoluene (BHT), in rats: an electron microscopical study. Histol Histopathol 1999;14:391–406.
  • Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects – a review. J Funct Foods 2015;18:820–97.
  • Fukuda T, Yokoyama J, Ohashi H. Phylogeny and biogeography of the genus Lycium (Solanaceae): inferences from chloroplast DNA sequences. Mol Phylogenet Evol 2001;19:246–58.
  • Amagase H, Farnsworth NR. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Res Int (Elsevier Ltd) 2011;44:1702–17.
  • Potterat O. Goji (Lycium barbarum and L. chinense): phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med 2010;76:7–19.
  • Donno D, Beccaro GL, Mellano MG, et al. Goji berry fruit (Lycium spp.): antioxidant compound fingerprint and bioactivity evaluation. J Funct Foods (Elsevier Ltd) 2015;18:1070–85.
  • Rotar AM, Vodnar DC, Bunghez F, et al. Effect of Goji Berries and honey on lactic acid bacteria viability and shelf life stability of yoghurt. Not Bot Horti Agrobo 2015;43:196–203.
  • Yang RF, Zhao C, Chen X, et al. Chemical properties and bioactivities of Goji (Lycium barbarum) polysaccharides extracted by different methods. J Funct Foods (Elsevier Ltd) 2015;17:903–9.
  • Chen C, Shao Y, Li Y, Chen T. Trace elements in Lycium barbarum L. Leaves by inductively coupled plasma mass spectrometry after microwave assisted digestion and multivariate analysis. Spectrosc Lett 2015;48:775–80.
  • Gong G, Fan J, Sun Y, et al. Isolation, structural characterization, and antioxidativity of polysaccharide LBLP5-A from Lycium barbarum leaves. Process Biochem (Elsevier Ltd) 2016;51:314–24.
  • Mencinicopschi IC, Bălan V, Manole CG. Lycium barbarum L. – a new species with adaptability potential in bucharest’s area. Sci Pap Ser a Agron 2012;LV:361–4.
  • Mencinicopschi IC, Bălan V. Growth and development characteristics of plant individuals from two Lycium barbarum L. varieties. Sci Pap Ser A: Agron 2013;LVI:490–7.
  • Dzugalov H, Lichev V, Yordanov A, et al. First results of testing Goji berry (Lycium barbarum L.) in Plovdiv region, Bulgaria. Sci Pap Ser B: Hortic 2015;LIX:47–50.
  • Mocan A, Vlase L, Vodnar DC, et al. Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. Leaves. Molecules 2014;19:10056–73.
  • Dulf FV, Vodnar DC, Dulf E-H, Toşa IM. Total phenolic contents, antioxidant activities, and lipid fractions from Berry Pomaces obtained by solid-state fermentation of two Sambucus species with Aspergillus niger. J Agric Food Chem 2015;63:3489–500.
  • Simirgiotis MJ. Antioxidant capacity and HPLC-DAD-MS profiling of chilean peumo (Cryptocarya alba) fruits and comparison with german peumo (Crataegus monogyna) from Southern Chile. Molecules 2013;18:2061–80.
  • Barakat H, Rohn S. Effect of different cooking methods on bioactive compounds in vegetarian, broccoli-based bars. J Funct Foods (Elsevier Ltd) 2014;11:407–16.
  • Rohn S, Rawel HM, Kroll J. Antioxidant activity of protein-bound quercetin. J Agric Food Chem 2004;52:4725–9.
  • Moussa-Ayoub TE, El-Hady EAA, Omran HT, et al. Influence of cultivar and origin on the flavonol profile of fruits and cladodes from cactus Opuntia ficus-indica. Food Res Int 2014;64:864–72.
  • Zengin G, Sarikurkcu C, Aktumsek A, et al. A comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss. endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. Ind Crops Prod (Elsevier BV) 2014;53:244–51.
  • Zengin G, Uysal A, Gunes E, Aktumsek A. Survey of phytochemical composition and biological effects of three extracts from a wild plant (Cotoneaster nummularia Fisch. et Mey.): a potential source for functional food ingredients and drug formulations. PLoS One 2014;9:e113527.
  • Lazarova I, Zengin G, Bender O, et al. A comparative study of Bulgarian and Turkish Asphodeline lutea root extracts: HPLC-UV profiles, enzyme inhibitory potentials and anti-proliferative activities against MCF-7 and MCF-10A cell lines. J Funct Foods (Elsevier Ltd) 2015;15:254–63.
  • Zengin G. A study on in vitro enzyme inhibitory properties of Asphodeline anatolica: new sources of natural inhibitors for public health problems. Ind Crops Prod 2016;83:39–43. (March):
  • Nachon F, Carletti E, Ronco C, et al. Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer’s drugs targeting acetyl-and butyryl-cholinesterase. Biochem J 2013;453:393–9.
  • Zhuo H, Payan F, Qian M. Crystal structure of the pig pancreatic α-amylase complexed with ρ-nitrophenyl-α-d-maltoside-flexibility in the active site. Protein J 2004;23:379–87.
  • Yamamoto K, Miyake H, Kusunoki M, Osaki S. Steric hindrance by 2 amino acid residues determines the substrate specificity of isomaltase from Saccharomyces cerevisiae. J Biosci Bioeng: Soc Biotechnol Jpn 2011;112:545–50.
  • Ismaya WT, Rozeboom J, Weijn A, et al. Crystal structure of Agaricus bisporus mushroom Tyrosinase: identity of the tetramer subunits and interaction with tropolone. Biochemistry 2011;50:5477–86.
  • Verdonk ML, Cole JC, Hartshorn MJ, et al. Improved protein–ligand docking using GOLD. Proteins Struct Funct Genet 2003;52:609–23.
  • Case DA, Berryman JT, Betz RM, et al. AMBER 2015. San Francisco: University of California; 2015.
  • Mocan A, Vodnar D, Vlase L, et al. Phytochemical characterization of Veronica officinalis L., V. teucrium L. and V. orchidea Crantz from Romania and their antioxidant and antimicrobial properties. Int J Mol Sci 2015;16:21109–27.
  • Mocan A, Vlase L, Arsene AL, et al. HPLC/MS analysis of caffeic and chlorogenic acids from three Romanian veronica species and their antioxidant and antimicrobial properties. Farmacia 2015;63:890–6.
  • Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res Mutagen Relat Subj 1983;113:173–215.
  • Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res – Fundam Mol Mech Mutagen 2000;455:29–60.
  • Ong TM, Whong WZ, Stewart J, Brockman HE. Chlorophyllin: a potent antimutagen against environmental and dietary complex mixtures. Mutat Res Lett 1986;173:111–15.
  • Dong JZ, Lu DY, Wang Y. Analysis of flavonoids from leaves of cultivated Lycium barbarum L. Plant Foods Hum Nutr 2009;64:199–204.
  • Abdennacer B, Karim M, Yassine M, et al. Determination of phytochemicals and antioxidant activity of methanol extracts obtained from the fruit and leaves of Tunisian Lycium intricatum Boiss. Food Chem (Elsevier Ltd) 2015;174:577–84.
  • Simirgiotis MJ, Bórquez J, Schmeda-Hirschmann G. Antioxidant capacity, polyphenolic content and tandem HPLC-DAD-ESI/MS profiling of phenolic compounds from the South American berries Luma apiculata and L. chequén. Food Chem (Elsevier Ltd) 2013;139:289–99.
  • Bajalan I, Mohammadi M, Alaei M, Pirbalouti AG. Total phenolic and flavonoid contents and antioxidant activity of extracts from different populations of lavandin. Ind Crops Prod (Elsevier BV) 2016;87:255–60.
  • Bilgin M, Şahin S. Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea europaea) leaves. J Taiwan Inst Chem Eng 2013;44:8–12.
  • Kosar M, Altintas A, Kirimer N, Baser KHC. Determination of the free radical scavenging activity of Lycium extracts. Chem Nat Compd 2003;39:531–5.
  • Yao X, Peng Y, Xu L-J, et al. Phytochemical and biological studies of Lycium medicinal plants. Chem Biodivers 2011;8:976–1010.
  • Dong JZ, Gao WS, Lu DY, Wang Y. Simultaneous extraction and analysis of four polyphenols from leaves of Lycium barbarum L. J Food Biochem 2011;35:914–31.
  • Clifford M, Johnston K, Knigh S, Kuhnert N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J Agric Food Chem 2003;51:2900–11.
  • Clifford MN, Knight S, Kuhnert N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MS(n). J Agric Food Chem 2005;53:3821–32.
  • Barros L, Dueñas M, Carvalho AM, et al. Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem Toxicol (Elsevier Ltd) 2012;50:1576–82.
  • Rodrigues S, Calhelha RC, Barreira JCM, et al. Crataegus monogyna buds and fruits phenolic extracts: growth inhibitory activity on human tumor cell lines and chemical characterization by HPLC-DAD-ESI/MS. Food Res Int (Elsevier Ltd) 2012;49:516–23.
  • Vallejo F, Tomás-Barberán FA, Ferreres F. Characterization of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography-UV diode-array detection-electrospray ionization mass spectrometry. J Chromatogr A 2004;1054:181–93.
  • Neugart S, Rohn S, Schreiner M. Identification of complex, naturally occurring flavonoid glycosides in Vicia faba and Pisum sativum leaves by HPLC-DAD-ESI-MSn and the genotypic effect on their flavonoid profile. Food Res Int (Elsevier Ltd) 2015;76:114–21.
  • Terauchi M, Kanamori H, Nobuso M, et al. Detection and determination of antioxidative components in Lycium chinense. Nat Med 1997;51:387–91.
  • Cherouana S, Touil A, Rhouati S. Two flavonoid glycosides from Lycium arabicum. Chem Nat Compd 2013;49:930–1.
  • Shahidi F, Naczk M. Phenolics in food and nutraceuticals. In: Shahidi F, Naczk M, eds. Vol. 1. New York: CRC Press Taylor & Francis Group; 2004.
  • John JA, Shahidi F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). J Funct Foods (Elsevier Ltd) 2010;2:196–209.
  • Rohn S, Kroh LW. Electron spin resonance-a spectroscopic method for determining the antioxidative activity. Mol Nutr Food Res 2005;49:898–907.
  • Apostolidis E, Li L, Lee C, Seeram NP. In vitro evaluation of phenolic-enriched maple sirup extracts for inhibition of carbohydrate hydrolyzing enzymes relevant to type 2 diabetes management. J Funct Foods (Elsevier Ltd) 2011;3:100–6.
  • Chen L, Kang Y-H. In vitro inhibitory effect of oriental melon (Cucumis melo L. var. makuwa Makino) seed on key enzyme linked to type 2 diabetes. J Funct Foods 2013;5:981–6.
  • Bahadori MB, Valizadeh H, Asghari B, et al. Chemical composition and antimicrobial, cytotoxicity, antioxidant and enzyme inhibitory activities of Salvia spinosa L. J Funct Foods (Elsevier Ltd) 2015;18:727–36.
  • Fu C, Yang X, Lai S, et al. Structure, antioxidant and α-amylase inhibitory activities of longan pericarp proanthocyanidins. J Funct Foods (Elsevier Ltd) 2015;14:23–32.
  • Seo WD, Kim JY, Ryu HW, et al. Identification and characterization of coumarins from the roots of Angelica dahurica and their inhibitory effects against cholinesterase. J Funct Foods (Elsevier Ltd) 2013;5:1421–31.
  • Yoon NY, Lee SH, Yong-Li, Kim SK. Phlorotannins from Ishige okamurae and their acetyl-and butyrylcholinesterase inhibitory effects. J Funct Foods (Elsevier Ltd) 2009;1:331–5
  • Wang T, Li X, Zhou B, et al. Anti-diabetic activity in type 2 diabetic mice and α-glucosidase inhibitory, antioxidant and anti-inflammatory potential of chemically profiled pear peel and pulp extracts (Pyrus spp.). J Funct Foods (Elsevier Ltd) 2015;13:276–88.
  • Shobana S, Sreerama YN, Malleshi NG. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: mode of inhibition of a-glucosidase and pancreatic amylase. Food Chem (Elsevier Ltd) 2009;115:1268–73.
  • Zhang Z, Luo A, Zhong K, et al. α-Glucosidase inhibitory activity by the flower buds of Lonicera japonica Thunb. J Funct Foods (Elsevier Ltd) 2013;5:1253–9.
  • Zengin G, Locatelli M, Ceylan R, Aktumsek A. Anthraquinone profile, antioxidant and enzyme inhibitory effect of root extracts of eight Asphodeline taxa from Turkey: can Asphodeline roots be considered as a new source of natural compounds? J Enzyme Inhib Med Chem 2016;31:754–9.
  • Sarikurkcu C, Tepe B. Biological activity and phytochemistry of firethorn (Pyracantha coccinea M.J. Roemer). J Funct Foods (Elsevier Ltd) 2015;19:669–75.
  • Borowiec K, Szwajgier D, Targoński Z, et al. Cholinesterase inhibitors isolated from bilberry fruit. J Funct Foods 2014;11:313–21.
  • Zengin G, Uysal S, Ceylan R, Aktumsek A. Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: a phytochemical study. Ind Crops Prod 2015;70:1–6.
  • Uysal S, Aktumsek A. A phytochemical study on Potentilla anatolica: an endemic Turkish plant. Ind Crops Prod (Elsevier BV) 2015;76:1001–7.
  • Karioti A, Protopappa A, Megoulas N, Skaltsa H. Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum. Bioorg Med Chem 2007;15:2708–14.
  • Iwai K, Kishimoto N, Kakino Y, et al. In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans. J Agric Food Chem 2004;52:4893–8.
  • Gidaro MC, Astorino C, Petzer A, et al. Kaempferol as selective human MAO-A inhibitor: analytical detection in Calabrian red wines, biological and molecular modeling studies. J Agric Food Chem 2016;64:1394–400.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem (Wiley Online Library) 2004;25:1605–12.
  • Mocan A, Zengin G, Crişan G, Mollica A. Enzymatic assays and molecular modeling studies of Schisandra chinensis lignans and phenolics from fruit and leaf extracts. J Enzyme Inhib Med Chem 2016. [Epub ahead of print]. doi: https://doi.org/http://dx.doi.org/10.1080/14756366.2016.1222585.
  • Caleja C, Barros L, Antonio AL, et al. Development of a functional dairy food: exploring bioactive and preservation effects of chamomile (Matricaria recutita L.). J Funct Foods (Elsevier Ltd) 2015;16:114–24.
  • Caleja C, Barros L, Antonio AL, et al. Foeniculum vulgare Mill. As natural conservation enhancer and health promoter by incorporation in cottage cheese. J Funct Foods 2015;12:428–38.
  • Terauchi M, Kanamori H, Nobuso M, et al. Antimicrobial components in leaves of Lycium chinense Mill. J Food Hyg Soc Japan 1998;39:399–405.
  • Ali-Shtayeh MS, Yaghmour RMR, Faidi YR, et al. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J Ethnopharmacol 1998;60:265–71.
  • Lou Z, Wang H, Zhu S, et al. Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 2011;76:M398–403.
  • Arima H, Ashida H, Danno G. Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci Biotechnol Biochem 2002;66:1009–14.
  • Kumar S, Gautam S, Sharma A. Identification of antimutagenic properties of anthocyanins and other polyphenols from Rose (Rosa centifolia) petals and tea. J Food Sci 2013;78:948–54.
  • Zhao X, Wang Q, Li G, et al. In vitro antioxidant, anti-mutagenic, anti-cancer and anti-angiogenic effects of Chinese Bowl tea. J Funct Foods (Elsevier Ltd) 2014;7:590–8.
  • Negi PS, Jayaprakasha GK, Jena BS. Antioxidant and antimutagenic activities of pomegranate peel extracts. Food Chem 2003;80:393–7.
  • Abraham SK, Schupp N, Schmid U, Stopper H. Antigenotoxic effects of the phytoestrogen pelargonidin chloride and the polyphenol chlorogenic acid. Mol Nutr Food Res 2007;51:880–7.
  • Anderson D, Dobrzyńska MM, Başaran N, et al. Flavonoids modulate Comet assay responses to food mutagens in human lymphocytes and sperm. Mutat Res – Fundam Mol Mech Mutagen 1998;402:269–77.