1,380
Views
14
CrossRef citations to date
0
Altmetric
Research Article

The role of 5-arylalkylamino- and 5-piperazino- moieties on the 7-aminopyrazolo[4,3-d]pyrimidine core in affecting adenosine A1 and A2A receptor affinity and selectivity profiles

, , , , , , , , , , , & show all
Pages 248-263 | Received 03 Aug 2016, Accepted 04 Oct 2016, Published online: 23 Jan 2017

References

  • Fredholm BB, IJzerman AP, Jacobson KA, et al. International union of pharmacology XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001;53:527–52.
  • Fredholm BB, IJzerman AP, Jacobson KA, et al. International union of pharmacology LXXXI. Nomenclature and classification of adenosine receptors. An up date. Pharmacol Rev 2011;63:1–34.
  • Maemoto T, Tada M, Mihara T, et al. Pharmacological characterization of FR194921, a new potent, selective, and orally active antagonist for central adenosine A1 receptors. J Pharmacol Sci 2004;96:42–52.
  • Mihara T, Iwashita A, Matsuoka N. A novel adenosine A1 and A2A receptor antagonist ASP5854 ameliorates motor impairment in MPTP-treated marmosets: comparison with existing anti-Parkinson's disease drugs. Behav Brain Res 2008;194:152–61.
  • Jacobson KA, Gao Z-G. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 2006;5:247–64.
  • Navarro G, Borroto-Escuela DO, Fuxe K, Franco R. Purinergic signaling in Parkinson's disease. Relevance for treatment. Neuropharmacology 2016;104:161–8.
  • Armentero MT, Pinna A, Ferré S, et al. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease. Pharmacol Ther 2011;132:280–99.
  • Chen J-F, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets — what are the challenges? Nat Rev Drug Discov 2013;12:265–86.
  • Kyowa Hakko K. Approval for manufacturing and marketing of NOURIAST tablets 20 mg. A novel antiparkinsonian agent; 2013. Available from: http://www.kyowakirin.com/news releases/2013/e20130325_04.htlm.
  • Shook BC, Rassnick S, Wallace N, et al. Design and characterization of optimized adenosine A2A/A1 receptor antagonists for the treatment of Parkinson's disease. J Med Chem 2012;55:1402–17.
  • Shook BC, Rassnick S, Jackson PF, et al. JNJ-40255293, a novel adenosine A2A/A1 antagonist with efficacy in preclinical models of Parkinson's disease. ACS Chem Neurosci 2014;5:1005–19.
  • Preti D, Baraldi PG, Moorman AR, et al. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev 2015;35:790–848.
  • Perez-Aso M, Chiriboga L, Cronstein BN. Pharmacological blockade of adenosine A2A receptors diminishes scarring. FASEB J 2012;26:4254–63.
  • Leone RD, Lo Y-C, Powell JD. A2AR antagonists: next generation checkpoint blockade for cancer immunotherapy. Comput Struct Biotechnol J 2015;13:265–72.
  • Catarzi D, Colotta V, Varano F, et al. 1,2,4-Triazolo[1,5-a]quinoxaline as a versatile tool for the design of selective human A3 adenosine receptor antagonists: synthesis, biological evaluation and molecular modeling studies of 2-(hetero)aryl- and 2-carboxy-substituted derivatives. J Med Chem 2005;48:7932–45.
  • Lenzi O, Colotta V, Catarzi D, et al. 4-Amido-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-ones as new potent and selective human A3 adenosine receptor antagonists. Synthesis, pharmacological evaluation and ligand-receptor modeling studies. J Med Chem 2006;49:3916–25.
  • Morizzo E, Capelli F, Lenzi O, et al. Scouting human A3 adenosine receptor antagonist binding mode using a molecular simplification approach: from triazoloquinoxaline to a pyrimidine skeleton as a key study. J Med Chem 2007;50:6596–606.
  • Colotta V, Catarzi D, Varano F, et al. Synthesis, ligand-receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists. Bioorg Med Chem 2008;16:6086–102.
  • Colotta V, Lenzi O, Catarzi D, et al. Pyrido[2,3-e]-1,2,4-triazolo[4,3-a]pyrazin-1-one as a new scaffold to develop potent and selective human A3 adenosine receptor antagonists. Synthesis, pharmacological evaluation and ligand-receptor modeling studies. J Med Chem 2009;52:2407–19.
  • Lenzi O, Colotta V, Catarzi D, et al. 2-Phenylpyrazolo[4,3-d]pyrimidin-7-one as a new scaffold to obtain potent and selective human A3 adenosine receptor antagonists: new insights into the receptor-antagonist recognition. J Med Chem 2009;52:7640–52.
  • Poli D, Catarzi D, Colotta V, et al. The identification of the 2-phenylphthalazin-1(2H)-one scaffold as a new decorable core skeleton for the design of potent and selective human A3 adenosine receptor antagonists. J Med Chem 2011;54:2102–13.
  • Squarcialupi L, Colotta V, Catarzi D, et al. 2-Arylpyrazolo[4,3-d]pyrimidin-7-amino derivatives as new potent and selective human A3 adenosine receptor antagonists. Molecular modeling studies and pharmacological evaluation. J Med Chem 2013;56:2256–69.
  • Catarzi D, Colotta V, Varano F, et al. Pyrazolo[1,5-c]quinazoline derivatives and their simplified analogues as adenosine receptor antagonists: synthesis, structure–affinity relationships and molecular modeling studies. Bioorg Med Chem 2013;21:283–94.
  • Squarcialupi L, Colotta V, Catarzi D, et al. 7-Amino-2-phenylpyrazolo[4,3-d]pyrimidine derivatives: structural investigations at the 5-position to target A1 and A2A adenosine receptors. Molecular modeling and pharmacological studies. Eur J Med Chem 2014;84:614–27.
  • Varano F, Catarzi D, Squarcialupi L, et al. Exploring the 7-oxo-thiazolo[5,4-d]pyrimidine core for the design of new human adenosine A3 receptor antagonists. Synthesis, molecular modeling studies and pharmacological evaluation. Eur J Med Chem 2015;96:105–21.
  • Squarcialupi L, Catarzi D, Varano F, et al. Structural refinement of pyrazolo[4,3-d]pyrimidine derivatives to obtain highly potent and selective antagonists for the human A3 adenosine receptor. Eur J Med Chem 2016;108:614–27.
  • Federico S, Paoletta S, Cheong SL, et al. Synthesis and biological evaluation of a new series of 1,2,4-triazolo[1,5-a]-1,3,5-triazines as human A2A adenosine receptor antagonists with improved water solubility. J Med Chem 2011;54:877–89.
  • Vu CB, Pan D, Peng B, et al. Novel diamino derivatives of [1,2,4]triazolo[1,5-a][1,3,5]triazine as potent and selective adenosine A2A receptor antagonists. J Med Chem 2005;48:2009–18.
  • Wong R, Dolman SJ. Isothiocyanates from tosyl chloride mediated decomposition of in situ generated dithiocarbamic acid salts. J Org Chem 2007;72:3969–71.
  • Gittos MW, Robinson MR, Verge JP, et al. Intramolecular cyclization of arylalkyl isothiocyanates. I. Synthesis of 1-substituted 3,4-dihydroisoquinolines. J Chem Soc Perkin Trans 1 Org Bioorg Chem 1976;1:33–8.
  • Antos K, Nemec P, Hrdina M. 4-Substituted β-Phenylethylisothiocyanates. Collect Czech Chem Comm 1972;37:3339–41.
  • Brown GB, Weliky VS. 2-Chloroadenine and 2-chloroadenosine. J Org Chem 1958;23:125–6.
  • Oumata N, Bettayeb K, Ferandin Y, et al. Roscovitine-derived, dual-specificity inhibitors of cyclin-dependent kinases and casein kinases 1. J Med Chem 2008;51:5229–42.
  • Lee W, Ortwine DF, Bergeron P, et al. A hit to lead discovery of novel N-methylated imidazolo-, pyrrolo-, and pyrazolo-pyrimidines as potent and selective mTOR inhibitors. Bioorg Med Chem Lett 2013;23:5097–104.
  • Kanojia RM, Salata JJ, Kauffman J. Synthesis and class III type antiarrhythmic activity of 4-aroyl (and aryl)-1-aralkylpiperazines. Bioorg Med Chem Lett 2000;10:2819–923.
  • Meyer WE, Tomcufcik AS, Chan PS, Haug M. 5-(1-Piperazinyl)-1H-1,2,4-triazol-3-amines as antihypertensive agents. J Med Chem 1989;32:593–7.
  • Ciancetta A, Sabbadin D, Federico S, et al. Advances in computational techniques to study GPCR-ligand recognition. Trends Pharmacol Sci 2015;36:878–90.
  • Ciancetta A, Cuzzolin A, Moro S. Alternative quality assessment strategy to compare performances of GPCR-ligand docking protocols: the human adenosine A2A receptor as a case study. J Chem Inf Model 2014;54:2243–54.
  • Chemical Computing Group Inc. Molecular Operating Environment (MOE); 2016. [Internet]. Available from: http://www.chemcomp.com
  • Cambridge Crystallographic Data Centre: 12 Union Road, Cambridge CB2 1EZ, UK. GOLD suite, version 5.2; 2016. [Internet]; Available from: http://www.ccdc.cam.ac.uk.
  • Stewart JJ. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 2007;13:1173–213.
  • Liu W, Chun E, Thompson AA, et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 2012;337:232–6.
  • Floris M, Sabbadin D, Medda R, et al. Adenosiland: walking through adenosine receptors landscape. Eur J Med Chem 2012;58:248–57.
  • Floris M, Sabbadin D, Ciancetta A, et al. Implementing the “Best Template Searching” tool into Adenosiland platform. In Silico Pharmacol 2013;20:1–25.
  • Ballesteros JA, Weinstein H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 1995; 25:366–428.
  • Labute P. Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins 2009;75:187–205.
  • Cuzzolin A, Sturlese M, Malvacio I, et al. DockBench: an integrated informatic platform bridging the gap between the robust validation of docking protocols and virtual screening simulations. Molecules 2015;20:9977–93.
  • MEncoder; 2016. [Internet]. Available from: http://www.mplayerhq.hu/design7/projects.html.
  • Gnuplot; 2016. [Internet]. Available from: http://www.gnuplot.info/index.html.
  • RDKit: Cheminformatics and Machine Learning Software; 2016. [Internet]. Available from: http://www.rdkit.org.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera: a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12.
  • Borea PA, Dalpiaz A, Varani K, et al. Binding thermodynamics at A1 and A2A adenosine receptors. Life Sci 1996;59:1373–88.
  • Varani K, Rigamonti D, Sipione S, et al. Aberrant amplification of A2A receptor signalling in striatal cells expressing mutant huntigtin. FASEB J 2001;5:1245–7.
  • Varani K, Cacciari B, Baraldi PG, et al. Binding affinity of adenosine receptor agonists and antagonists at human cloned A3 adenosine receptors. Life Sci 1998;63:81–7.
  • Varani K, Gessi S, Merighi S, et al. Pharmacological characterization of novel adenosine ligands in recombinant and native human A2B receptors. Biochem Pharmacol 2005;70:1601–12.
  • Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 1976;72:248–54.
  • Prusoff CYC, Relationships WH. between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 1973;22:3099–108.
  • Munson PJ, Rodbard D. Ligand: a versatile computerized approach for the characterization of ligand binding systems. Anal Biochem 1980;107:220–39.