1,788
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Probing the druggability of membrane-bound Rab5 by molecular dynamics simulations

&
Pages 434-443 | Received 22 Jul 2016, Accepted 04 Nov 2016, Published online: 16 Jan 2017

References

  • Stenmark H, Olkkonen VM. The Rab GTPase family. Genome Biol 2001;2:3007.1.
  • Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol 2012;196:189–201.
  • Pereira-Leal JB, Seabra MC. Evolution of the rab family of small GTP-binding proteins. J Mol Biol 2001;313:889–901.
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009;10:513–25.
  • Stein M, Pilli M, Bernauer S, et al. The interaction properties of the human rab GTPase family: a comparative analysis reveals determinants of molecular binding selectivity. PLoS One 2012;7:e34870.
  • Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001;2:107–17.
  • Wieffer M, McShane M, Zerial M. Rab proteins and the organization of organelle membrane domains. In: Wittinghofer A, ed. Ras Superfamily Small G Proteins: Biology and Mechanisms 2. Cham: Springer International Publishing; 2014: 17–38.
  • Prada-Delgado A, Carrasco-Marin E, Pena-Macarro C, et al. Inhibition of Rab5a exchange activity is a key step for Listeria monocytogenes survival. Traffic 2005;6:252–65.
  • Coyne CB, Le S, Turner JR, Bergelson JM. Coxsackievirus entry across epithelial tight junctions requires occludin and the small GTPases Rab34 and Rab5. Cell Host Microbe 2007;2:181–92.
  • Mallo GV, Espina M, Smith AC, et al. SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J Cell Biol 2008;182:741–52.
  • Sarantis H, Balkin DM, De Camilli P, et al. Yersinia entry into host cells requires Rab5-dependent dephosphorylation of PI(4,5)P2 and membrane scission. Cell Host Microbe 2012;11:117–28.
  • Frittoli E, Palamidessi A, Marighetti P, et al. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination. J Cell Biol 2014;206:307–28.
  • Ginsberg SD, Mufson EJ, Counts SE, et al. Regional selectivity of rab5 and rab7 protein upregulation in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 2010;22:631–9.
  • Ravikumar B, Imarisio S, Sarkar S, et al. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 2008;121:1649–60.
  • Mitra S, Cheng KW, Mills GB. Rab GTPases implicated in inherited and acquired disorders. Semin Cell Dev Biol 2011;22:57–68.
  • Cox AD, Fesik SW, Kimmelman AC, et al. Drugging the undruggable RAS: Mission Possible? Nat Rev Drug Discov 2014;13:828–51.
  • Kalli AC, Sansom MSP. Interactions of peripheral proteins with model membranes as viewed by molecular dynamics simulations. Biochem Soc Trans 2014;42:1418–24.
  • Prakash P, Gorfe AA. Lessons from computer simulations of Ras proteins in solution and in membrane. Biochim Biophys Acta-Gen Sub 2013;1830:5211–18.
  • Janosi L, Gorfe AA. Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras. Biophys J 2010;99:3666–74.
  • Gorfe AA, Pellarin R, Caflisch A. Membrane localization and flexibility of a lipidated ras peptide studied by molecular dynamics simulations. J Am Chem Soc 2004;126:15277–86.
  • Reuther G, Tan KT, Kohler J, et al. Structural model of the membrane-bound C terminus of lipid-modified human N-ras protein. Angewandte Chemie-Int Ed 2006;45:5387–90.
  • Vogel A, Tan KT, Waldmann H, et al. Flexibility of ras lipid modifications studied by H-2 solid-state NMR and molecular dynamics simulations. Biophys J 2007;93:2697–712.
  • Gorfe AA, Hanzal-Bayer M, Abankwa D, et al. Structure and dynamics of the full-length lipid-modified H-ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer. J Med Chem 2007;50:674–84.
  • Prakash P, Zhou Y, Liang H, et al. Oncogenic K-Ras binds to an anionic membrane in two distinct orientations: a molecular dynamics analysis. Biophys J 2016;110:1125–38.
  • Prakash P, Gorfe AA. Membrane orientation dynamics of lipid-modified small GTPases. Small GTPases 2016. [Epub ahead of print]. doi: 10.1080/21541248.2016.1211067.
  • Hajduk PJ, Huth JR, Tse C. Predicting protein druggability. Drug Discovery Today 2005;10:1675–82.
  • Zhu GY, Zhai P, Liu J, et al. Structural basis of Rab5-Rabaptin5 interaction in endocytosis. Nat Struct Mol Biol 2004;11:975–83.
  • Terzyan S, Zhu GY, Li GP, Zhang XJC. Refinement of the structure of human Rab5a GTPase domain at 1.05 A resolution. Acta Crystallogr D Biol Crystallogr 2004;60:54–60.
  • Sali A, Blundell TL. Comparative Protein modelling by satisfaction of spatial restraints. J Mol Biol 1993;234:779–815.
  • Shen MY, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci 2006;15:2507–24.
  • MacroModel, version 10.0. New York, NY: Schrödinger, LLC; 2013.
  • Jorgensen WL, Maxwell DS, TiradoRives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996;118:11225–36.
  • Jo S, Lim JB, Klauda JB, Im W. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 2009;97:50–8.
  • Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem 2005;26:1781–802.
  • Best RB, Zhu X, Shim J, et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) Dihedral angles. J Chem Theory Comput 2012;8:3257–73.
  • Pastor RW, MacKerell AD. Development of the CHARMM force field for lipids. J Phys Chem Lett 2011;2:1526–32.
  • Venable RM, Sodt AJ, Rogaski B, et al. CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature. Biophys J 2014;107:134–45.
  • Lim JB, Rogaski B, Klauda JB. Update of the cholesterol force field parameters in CHARMM. J Phys Chem B 2012;116:203–10.
  • Foloppe N, MacKerell AD. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 2000;21:86–104.
  • Pavelites JJ, Gao JL, Bash PA, Mackerell AD. A molecular mechanics force field for NAD(+), NADH, and the pyrophosphate groups of nucleotides. J Comput Chem 1997;18:221–39.
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983;79:926–35.
  • Feller SE, Zhang YH, Pastor RW, Brooks BR. Constant pressure molecular dynamics simulation: The Langevin piston method. J Chem Phys 1995;103:4613–21.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. J Chem Phys 1993;98:10089–92.
  • Vogel A, Katzka CP, Waldmann H, et al. Lipid modifications of a Ras peptide exhibit altered packing and mobility versus host membrane as detected by 2H solid-state NMR. J Am Chem Soc 2005;127:12263–72.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996;14:33–8.
  • Miller S, Janin J, Lesk AM, Chothia C. Interior and surface of monomeric proteins. J Mol Biol 1987;196:641–56.
  • Vigil D, Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 2010;10:842–57.
  • Mishra A, Eathiraj S, Corvera S, Lambright DG. Structural basis for Rab GTPase recognition and endosome tethering by the C2H2 zinc finger of Early Endosomal Autoantigen 1 (EEA1). Proc Natl Acad Sci USA 2010;107:10866–71.
  • Zhang Z, Zhang TL, Wang SS, et al. Molecular mechanism for Rabex-5 GEF activation by Rabaptin-5. Elife 2014;3:45.
  • Ignatev A, Kravchenko S, Rak A, et al. A structural model of the GDP dissociation inhibitor rab membrane extraction mechanism. J Biol Chem 2008;283:18377–84.
  • Lucas M, Gaspar AH, Pallara C, et al. Structural basis for the recruitment and activation of the Legionella phospholipase VipD by the host GTPase Rab5. Proc Natl Acad Sci USA 2014;111:E3514–23.
  • Howe R, Kelly M, Jimah J, et al. Isoprenoid biosynthesis inhibition disrupts Rab5 localization and food vacuolar integrity in Plasmodium falciparum. Eukaryot Cell 2013;12:215–23.
  • Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 2007;129:865–77.