2,112
Views
26
CrossRef citations to date
0
Altmetric
Short Communication

Exploring the first Rimonabant analog-opioid peptide hybrid compound, as bivalent ligand for CB1 and opioid receptors

, , , , , , , , , , , , , , , , , , , & show all
Pages 444-451 | Received 13 Aug 2016, Accepted 08 Nov 2016, Published online: 18 Jan 2017

References

  • Zador F, Wollemann M. Receptome: interactions between three pain related receptors or the Triumvirate of cannabinoid, opioid and TRPV1 receptors. Pharmacol Res 2015;102:254–63.
  • Shapira M, Vogel Z, Sarne Y. Opioid and cannabinoid receptors share a common pool of GTP-binding proteins in cotransfected cells, but not in cells which endogenously coexpress the receptors. Cell Mol Neurobiol 2000;20:291–304.
  • Berrendero F, Mendizabal V, Murtra P, et al. Cannabinoid receptor and WIN 55 212-2-stimulated [35S]-GTPgammaS binding in the brain of mu-, delta- and kappa-opioid receptor knockout mice. Eur J Neurosci 2003;18:2197–202.
  • Uriguen L, Berrendero F, Ledent C, et al. Kappa- and delta-opioid receptor functional activities are increased in the caudate putamen of cannabinoid CB1 receptor knockout mice . Eur J Neurosci 2005;22:2106–10.
  • Jagerovic N, Fernandez-Fernandez C, Erdozain AM, et al. Combining rimonabant and fentanyl in a single entity: preparation and pharmacological results. Drug Des Dev Ther 2014;8:263–77.
  • Le Naour M, Akgun E, Yekkirala A, et al. Bivalent ligands that target µ-opioid (MOP) and cannabinoid1 (CB1) receptors are potent analgesics devoid of tolerance. J Med Chem 2013;56:5505–13.
  • Poras H, Bonnard E, Dange E, et al. New orally active dual enkephalinase inhibitors (DENKIs) for central and peripheral pain treatment. J Med Chem 2014;57:5748–63.
  • Cota D, Tschop MH, Horvath TL, Levine AS. Cannabinoids, opioids and eating behavior: the molecular face of hedonism?. Brain Res Rev 2006;51:85–107.
  • Desroches J, Beaulieu P. Opioids and cannabinoids interactions: involvement in pain management. Curr Drug Targets 2010;11:462–73.
  • Bushlin I, Rozenfeld R, Devi LA. Cannabinoid-opioid interactions during neuropathic pain and analgesia. Curr Opin Pharmacol 2010;10:80–6.
  • da Fonseca Pacheco D, Klein A, de Castro Perez A, et al. The µ-opioid receptor agonist morphine, but not agonists at δ- or k-opioid receptors, induces peripheral antinociception mediated by cannabinoid receptors. Br J Pharmacol 2008;154:1143–9.
  • Manzanares J, Corchero J, Romero J, et al. Pharmacological and biochemical interactions between opioids and cannabinoids. Trends Pharmacol Sci 1999;20:287–94.
  • Wollemann M, Toth F, Benyhe S. Protein kinase C inhibitor BIM suspended TRPV1 effect on mu-opioid receptor. Brain Res Bull 2013;90:114–17.
  • Parolaro D, Rubino T, Vigano D, et al. Cellular mechanisms underlying the interaction between cannabinoid and opioid system. Curr Drug Targets 2010;11:393–405.
  • Manzanares J, Ortiz S, Oliva JM, et al. Interactions between cannabinoid and opioid receptor systems in the mediation of ethanol effects. Alcohol Alcohol 2005;40:25–34.
  • Scavone JL, Sterling RC, Van Bockstaele EJ. Cannabinoid and opioid interactions: implications for opiate dependence and withdrawal. Neuroscience 2013;248:637–54.
  • Befort K. Interactions of the opioid and cannabinoid systems in reward: insights from knockout studies. Front Pharmacol 2015;56:6.
  • Moreira FA, Aguiar DC, Campos AC, et al. Antiaversive effects of cannabinoids: is the periaqueductal gray involved? Neural Plast 2009;2009:625469.
  • Mollica A, Costante R, Novellino E, et al. Design, synthesis and biological evaluation of two opioid agonist and Cav 2.2 blocker multitarget ligands. Chem Biol Drug Des 2015;86:156–62.
  • Monti L, Stefanucci A, Pieretti S, et al. Evaluation of the analgesic effect of 4-anilidopiperidine scaffold containing ureas and carbamates. J Enzyme Inhib Med Chem 2016;31:1638–47.
  • Dvoracsko S, Stefanucci A, Novellino E, Mollica A. The design of multitarget ligands for chronic and neuropathic pain. Future Med Chem 2015;7:2469–83.
  • Podolsky AT, Sandweiss A, Hu J, et al. Novel fentanyl-based dual µ/δ-opioid agonists for the treatment of acute and chronic pain. Life Sci 2013;93:1010–16.
  • Deekonda S, Wugalter L, Rankin D, et al. Design and synthesis of novel bivalent ligands (MOR and DOR) by conjugation of enkephalin analogues with 4-anilidopiperidine derivatives. Bioorg Med Chem Lett 2015;25:4683–8.
  • Caille S, Parsons LH. Cannabinoid modulation of opiate reinforcement through the ventral striatopallidal pathway. Neuropsychopharmacology 2006;31:804–13.
  • Azizi P, Haghparast A, Hassanpour-Ezatti M. Effects of CB1 receptor antagonist within the nucleus accumbens on the acquisition and expression of morphine-induced conditioned place preference in morphine-sensitized rats. Behav Brain Res 2009;197:119–24.
  • Silvestri R, Cascio MG, La Regina G, et al. Synthesis, cannabinoid receptor affinity, and molecular modeling studies of substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides. J Med Chem 2008;51:1560–76.
  • Rinaldi-Carmona M, Barth F, Héaulme M. Biochemical and pharmacological characterisation of SR141716A, the first potent and selective brain cannabinoid receptor antagonist. Life Sci 1995;56:1941–7.
  • Rinaldi-Carmona M, Barth F, Héaulme M, et al. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 1994;350:240–4.
  • MacLennan SJ, Reynen PH, Kwan J, Bonhaus DW. Evidence for inverse agonism of SR141716A at human recombinant cannabinoid CB1 and CB2 receptors. Br J Pharmacol 1998;124:619–22.
  • Sim-Selley LJ, Brunk LK, Selley DE. Inhibitory effects of SR141716A on G-protein activation in rat brain. Eur J Pharmacol 2001;414:135–43.
  • Cinar R, Szücs M. CB1 receptor-independent actions of SR141716 on G-protein signaling: coapplication with the µ-opioid agonist Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol unmasks novel, pertussis toxin-insensitive opioid signaling in µ-opioid receptor-Chinese hamster ovary cells. J Pharmacol Exp Ther 2009;330:567–74.
  • Fong TM, Shearman LP, Stribling DS, et al. Pharmacological efficacy and safety profile of taranabant in preclinical species. Drug Dev Res 2009;70:349–62.
  • Kathmann M, Flau K, Redmer A, et al. Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors. Naunyn Schmiedebergs Arch Pharmacol 2006;372:354–61.
  • Seely KA, Brents LK, Franks LN, et al. AM-251 and rimonabant act as direct antagonists at µ-opioid receptors: implications for opioid/cannabinoid interaction studies. Neuropharmacology 2012;63:905–15.
  • Zádor F, Kocsis D, Borsodi A, Benyhe S. Micromolar concentrations of rimonabant directly inhibits delta opioid receptor specific ligand binding and agonist-induced G-protein activity. Neurochem Int 2014;67:14–22.
  • Zádor F, Lénárt N, Csibrány B, et al. Low dosage of rimonabant leads to anxiolytic-like behavior via inhibiting expression levels and G-protein activity of kappa opioid receptors in a cannabinoid receptor independent manner. Neuropharmacology 2015;89:298–307.
  • Zádor F, Otvös F, Benyhe S, et al. Inhibition of forebrain µ-opioid receptor signaling by low concentrations of rimonabant does not require cannabinoid receptors and directly involves µ-opioid receptors. Neurochem Int 2012;61:378–88.
  • Deats SP, Adidharma W, Yan L. Hypothalamic dopaminergic neurons in an animal model of seasonal affective disorder. Neurosci Lett 2015;602:17–21.
  • Nathan PJ, O’Neill BV, Napolitano A, Bullmore ET. Neuropsychiatric adverse effects of centrally acting antiobesity drugs. CNS Neurosci Ther 2011;17:490–505.
  • Leibowitz SF. Hypothalamic paraventricular nucleus: interaction between alpha 2-noradrenergic system and circulating hormones and nutrients in relation to energy balance. Neurosci Biobehav Rev 1988;12:101–9.
  • Gillard ER, Dang DQ, Stanley BG. Evidence that neuropeptide Y and dopamine in the perifornical hypothalamus interact antagonistically in the control of food intake. Brain Res 1993;628:128–36.
  • Yang ZJ, Meguid MM. LHA dopaminergic activity in obese and lean Zucker rats. NeuroReport 1995;6:1191–4.
  • Wellman PJ, Davies BT, Morien A, McMahon L. Modulation of feeding by hypothalamic paraventricular nucleus α1- and α2-adrenergic receptors. Life Sci 1993;53:669–79.
  • Levin BE. Reduced paraventricular nucleus norepinephrine responsiveness in obesity-prone rats. Am J Physiol 1996;270:456–61.
  • Brunetti L, Ferrante C, Orlando G, et al. Orexigenic effects of endomorphin-2 (EM-2) related to decreased CRH gene expression and increased dopamine and norepinephrine activity in the hypothalamus. Peptides 2013;48:83–8.
  • Asakawa A, Inui A, Ueno N, et al. Endomorphin-1, an endogenous mu-opioisd receptor-selective agonist, stimulates oxygen consumption in mice. Horm Metab Res 2000;32:51–2.
  • Cheng F, Li W, Zhou Y, et al. AdmetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 2012;52:3099–105.
  • Duchesnay D. Scikit-learn: machine learning in Python. J Mach Learn Res 2011;12:2825–30.
  • Riniker S, Landrum GA. Similarity maps – a visualization strategy for molecular fingerprints and machine-learning methods. J Cheminform 2013;5:43.