1,204
Views
5
CrossRef citations to date
0
Altmetric
Short Communication

N-aryl 2-aryloxyacetamides as a new class of fatty acid amide hydrolase (FAAH) inhibitors

, , , , , , & ORCID Icon show all
Pages 513-521 | Received 01 Sep 2016, Accepted 21 Oct 2016, Published online: 23 Jan 2017

References

  • Pacher P, Batkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006;58:389–462.
  • Alger BE, Kim J. Supply and demand for endocannabinoids. Trends Neurosci 2011;34:304–15.
  • Deutsch DG, Chin SA. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol 1993;46:791–6.
  • Blankman JL, Simon GM, Cravatt BF. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 2007;14:1347–56.
  • Giang DK, Cravatt BF. Molecular characterization of human and mouse fatty acid amide hydrolases. Proc Natl Acad Sci USA 1997;94:2238–42.
  • Fowler CJ, Jonsson K-O, Tiger G. Fatty acid amide hydrolase: biochemistry, pharmacology, and therapeutic possibilities for an enzyme hydrolyzing anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleamide. Biochem Pharmacol 2001;62:517–26.
  • Kathuria S, Gaetani S, Fegley D, et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 2003;9:76–81.
  • Chang L, Luo L, Palmer JA, et al. Inhibition of fatty acid amide hydrolase produces analgesia by multiple mechanisms. Br J Pharmacol 2006;148:102–13.
  • Jayamanne A, Greenwood R, Mitchell VA, et al. Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models. Br J Pharmacol 2006;147:281–8.
  • Gobbi G, Bambico FR, Mangieri R, et al. Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci USA 2005;102:18620–5.
  • Ahn K, Johnson DS, Mileni M, et al. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem Biol 2009;16:411–20.
  • McKinney MK, Cravatt BF. Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 2005;74:411–32.
  • Vandevoorde S. Overview of the chemical families of fatty acid amide hydrolase and monoacylglycerol lipase inhibitors. Curr Top Med Chem 2008;8:247–67.
  • Boger DL, Sato H, Lerner AE, et al. Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of endogenous oleamide and anandamide. Proc Natl Acad Sci USA 2000;97:5044–9.
  • Lodola A, Castelli R, Mor M, et al. Fatty acid amide hydrolase inhibitors: a patent review (2009–2014). Expert Opin Ther Patents 2015;25:1247–66.
  • Mor M, Rivara S, Lodola A, et al. Cyclohexylcarbamic acid 3′- or 4′-substituted biphenyl-3-yl esters as fatty acid amide hydrolase inhibitors: synthesis, quantitative structure-activity relationships, and molecular modeling studies. J Med Chem 2004;47:4998–5008.
  • Alexander JP, Cravatt BF. Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes. Chem Biol 2005;12:1179–87.
  • Lodola A, Capoferri L, Rivara S, et al. Quantum mechanics/molecular mechanics modeling of fatty acid amide hydrolase reactivation distinguishes substrate from irreversible covalent inhibitors. J Med Chem 2013;56:2500–12.
  • Piomelli D, Tarzia G, Duranti A, et al. Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev 2006;12:21–38.
  • Bracey MH, Hanson MA, Masuda KR, et al. Structural adaptations in a membrane enzyme that terminates endocannabinoid signalling. Science 2002;298:1793–6.
  • Bertolacci L, Romeo E, Veronesi M, et al. A binding site for nonsteroidal anti-inflammatory drugs in fatty acid amide hydrolase. J Am Chem Soc 2013;135:22–5.
  • Nunes JJ, Milne JC, Bemis JE, et al. Imidazopyridine derivatives as sirtuin modulating agents. Patent WO2007/019345 A1; 2007.
  • Bemis JE, Vu CB, Xie R, et al. Discovery of oxazolo[4,5-b]pyridines and related heterocyclic analogs as novel SIRT1 activators. Bioorg Med Chem Lett 2009;19:2350–3.
  • Garmaise DL, Komlossy J. The preparation of 2-arylimidazo[4,5-b]pyridines. J Org Chem 1964;29:3403–5.
  • Eichelberger U, Neundorf I, Hennig L, et al. Synthesis of analogues of the 2-O-alkyl glycerate part of the moenomycins. Tetrahedron 2002;58:545–59.
  • Boldrup L, Wilson SJ, Barbier AJ, et al. A simple stopped assay for fatty acid amide hydrolase avoiding the use of a chloroform extraction phase. J Biochem Biophys Methods 2004;60:171–7.
  • Cipriano M, Björklund E, Wilson AA, et al. Inhibition of fatty acid amide hydrolase and cyclooxygenase by the N-(3-methylpyridin-2-yl)amide derivatives of flurbiprofen and naproxen. Eur J Pharmacol 2013;720:383–90.
  • Wilson AA, Hicks JW, Sadovski O, et al. Radiosynthesis and evaluation of [C-11-carbonyl]-labeled carbamates as fatty acid amide hydrolase radiotracers for positron emission tomography. J Med Chem 2013;56:201–9.
  • Paylor B, Holt S, Fowler CJ. The potency of the fatty acid amide hydrolase inhibitor URB597 is dependent upon the assay pH. Pharmacol Res 2006;54:481–5.
  • Paylor B, Holt S, Fowler CJ. Erratum to The potency of the fatty acid amide hydrolase inhibitor URB597 is dependent upon the assay pH. Pharmacol Res 2006;55:80.
  • Bergström CA, Norinder U, Luthman K, Artursson P. Experimental and computational screening models for prediction of aqueous drug solubility. Pharm Res 2002;19:182–8.
  • Min X, Thibault ST, Porter AC, et al. Discovery and molecular basis of potent noncovalent inhibitors of fatty acid amide hydrolase (FAAH). Proc Natl Acad Sci USA 2011;108:7379–84.
  • Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004;47:1739–49.
  • Still WC, Tempczyk A, Hawley RC, et al. Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 1990;112:6127–9.