1,321
Views
4
CrossRef citations to date
0
Altmetric
Research Article

New arylsparteine derivatives as positive inotropic drugs

, , , , , , , , & show all
Pages 588-599 | Received 27 Oct 2016, Accepted 03 Jan 2017, Published online: 29 Jan 2017

References

  • Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J 2008;29:2388–442.
  • Feldman AM. Classification of positive inotropic agents. J Am Coll Cardiol 1993;22:1223–7.
  • Francis GS, Bartos JA, Adatya S. Inotropes. J Am Coll Cardiol 2014;63:2069–78.
  • Tariq S, Aronow WS. Use of inotropic agents in treatment of systolic heart failure. Int J Mol Sci 2015;16:29060–8.
  • Endoh M, Hori M. Basic pharmacology and clinical application of new positive inotropic agents. Drugs Today 1993;29:29–54.
  • Tham YK, Bernardo BC, Ooi JY, et al. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015;89:1401–38.
  • Matsumori A. The role of NF-kappaB in the pathogenesis of heart failure and endotoxemia. Drugs Future 2004;29:733–9.
  • Shin DD, Brandimarte F, De Luca L, et al. Review of current and investigational pharmacologic agents for acute heart failure syndromes. Am J Cardiol 2007;99:4A–23A.
  • Suffredini S, Mugelli A, Cerbai E. I(f) channels as a therapeutic target in heart disease. Future Cardiol 2007;3:657–66.
  • Tamargo J, Duarte J, Caballero R, Delpón E. New therapeutic targets for the development of positive inotropic agents. Discov Med 2011;12:381–92.
  • (a) Forster N, Hoefke W. A comparison of the effects of sparteine, quinidine and nicotine on isolated myocardium of rats and cats. Naunyn–Schmiedeberg’s Arch. Expt Pathol Pharmakol 1960;239:383–92. (b) von Philipsborn G, Wilhelm E, Homburger H. Effect of sparteine in the isolated atrial myocardium of guinea-pigs. Naunyn-Schmiedeberg’s Arch Pharmacol 1973;277:281–90. (c) Raschack M. Actions of sparteine and sparteine derivatives on the heart and circulation. Arzneim Forsch 1974;24:753–9. (d) Engelmann K, Raake W, Petter A. The importance of hydrophobic groups for the antiarrhythmic results of alkylated sparteine. Arzneim Forsch 1974;24:759–61.
  • Schmidt HD, Padeken D, Beck L. Cardiovascular effect of sparteine in anaesthetized dogs with and without blockade of cardiac autonomic nerves. Arzneim Forsch 1986;36:1481–4.
  • Kimura M, Kimura I, Chui L-H, Okuda S. Positive inotropic action and conformation difference of lupin alkaloids in isolated cardiac muscle of guinea pig and bullfrog. Phytother Res 1989;3:101–5.
  • Zetler G, Strubelt O. Antifibrillatory, cardiovascular and toxic effects of sparteine, butylsparteine and pentylsparteine. Arzneimittelforschung 1980;30:1497–502.
  • (a) Schoen U, Kehrbach W, Hachmeister B, et al. Ger. Offen. DE3522475-A1-19870102. Chem Abstr 1987;106:156761s. (b) Schoen U, Kehrbach W, Hachmeister B, et al. Ger. Offen. DE3643402-A1-19880630. Chem Abstr 1988;110:63753h.
  • (a) Winterfeld K, Hoffmann E. Über das Verhalten des Lupanins bei der Grignardierung (Zugleich XII. Mitteilung über die Alkaloide der Lupinen). Arch Pharm 1937;275:5–27. (b) Winterfeld K, Hoffmann E. Zur Kenntnis des Anisoyl-Sparteins (Zugleich XIV. Mitteilung über die Alkaloide der Lupinen). Arch Pharm 1937;275:526–32.
  • Jack W. Untersuchung einiger Sparteinabkömmlinge auf die flimmerwidrige Wirkung am Froschherzen. Arch Exptl Pathol Pharmakol 1942;200:528–35.
  • (a) Sparatore F, Boido V, Preziosi P, et al. Synthesis and pharmacodynamic properties of various lupinane derivatives. Farmaco, Ed. Sci 1969;24:587–621. (b) Boido V, Boido A, Boido Canu C, Sparatore F. Quinolozidinylalkylamines with antihypertensive activity. Farmaco, Ed. Sci 1979;34:673–87.
  • (a) Canu Boido C, Sparatore F. Synthesis and preliminary pharmacological evaluation of some cytisine derivatives. Farmaco 1999;54:438–51. (b) Canu Boido C, Tasso B, Boido V, Sparatore F. Cytisine derivatives as ligands for neuronal nicotine receptors and with various pharmacological activities. Farmaco 2003;58:265–77.
  • (a) Sparatore A, Sparatore F. Preparation and pharmacological activities of 10-homolupinanoyl-2-R-phenothiazines. Farmaco 1994;49:5–17. (b) Sparatore A, Sparatore F. Preparation and pharmacological activities of homolupinanoyl anilides. Farmaco 1995;50:153–66.
  • Vazzana I, Budriesi R, Terranova E, et al. Novel quinolizidinyl derivatives as antiarrhythmic agents. J Med Chem 2007;50:334–43.
  • Tasso B, Budriesi R, Vazzana I, et al. Novel quinolizidinyl derivatives as antiarrhythmic agents: 2. Further investigation. J Med Chem 2010;53:4668–77.
  • Boczón W. Further studies on the stereochemistry of sparteine, its isomers and derivatives. XV. Synthesis, structure and spectroscopic properties of 2-methyl-2-dehydrosparteine and 2-(p-tolyl)-2-dehydrosparteine (free bases) and their diprotonated salts. Bull Pol Acad Sci Chem 1988;36:21–36.
  • Boczón W, Koziol B. Further studies on the stereochemistry of sparteine, its isomers and derivatives. XXIV. 2-(p-Tolyl)sparteine and its monoperchlorate salt. J Mol Struct 1997;403:171–81.
  • MOE: Chemical Computing Group Inc. Montreal. H3A 2R7 Canada. http://www.chemcomp.com.
  • (a) Fossa P, Cichero E. In silico evaluation of human small heat shock protein HSP27: homology modeling, mutation analyses and docking studies. Bioorg Med Chem 2015;23:3215–20. (b) Franchini S, Manasieva LI, Sorbi C, et al. Synthesis, biological evaluation and molecular modeling of 1-oxa-4-thiaspiro- and 1,4-dithiaspiro[4.5]decane derivatives as potent and selective 5-HT1A receptor agonists. Eur J Med Chem 2016;125:435–52. (c) Deiana V, Gómez-Cañas M, Pazos MR, et al. Tricyclic pyrazoles. Part 8. Synthesis, biological evaluation and modelling of tricyclic pyrazole carboxamides as potential CB2 receptor ligands with antagonist/inverse agonist properties. Eur J Med Chem 2016;112:66–80.
  • Ligon EWm. Jr., Action of lupine alkaloids on the motility of the isolated rabbit uterus. J Pharmacol 1941;73:151–8.
  • (a) Sparatore A, Novelli F, Sparatore F. Quinolizidine derivatives as ligands for sigma receptors. Med Chem Res 2002;11:1–11. (b) Sparatore A, Novelli F, Sparatore F. 1-(Arylalkyl)quinolizidine derivatives and thio-isosteric analogs as ligands for sigma receptors. Helv Chim Acta 2004;87:580–91.
  • (a) De Costa BR, Radesca L, Di Paolo L, Bowen WD. Synthesis, characterization, and biological evaluation of a novel class of N-(arylethyl)-N-alkyl-2-(1-pyrrolidinyl)ethylamines: structural requirements and binding affinity at the sigma receptor. J Med Chem 1992;35:38–47. (b) Glennon RA. Pharmacophore identification for sigma-1 (sigma1) receptor binding: application of the “deconstruction-reconstruction-elaboration” approach. Mini Rev Med Chem 2005;5:927–40. (c) Matsumoto RR, Bowen WD, Su TP. Sigma receptors. Chemistry, cell biology and clinical implications. New York: Springer; 2007. ISBN 978-0-387-36514-5.
  • Monassier L, Bousquet P. Sigma receptors: from discovery to highlights of their implications in the cardiovascular system. Fundam Clin Pharmacol 2002;16:1–8.
  • Zhang H, Cuevas J. Sigma receptor activation blocks potassium channels and depresses neuroexcitability in rat intracardiac neurons. J Pharmacol Exp Ther 2005;313:1387–96.
  • Bhuiyan MS, Fukunaga K. Targeting sigma-1 receptor signaling by endogenous ligands for cardioprotection. Expert Opin Ther Targets 2011;15:145–55.
  • Novakova M. Effects of sigma receptor ligand BD737 in rat isolated hearts. Scr Med (Brno) 2007;80:255–62.
  • Novakova M, Bruderova V, Sulova Z, et al. Modulation of expression of the sigma receptors in the heart of rat and mouse in normal and pathological conditions. Gen Physiol Biophys 2007;26:110–17.
  • (a) Laurini E, Marson D, Dal Col V, et al. Another brick in the wall. Validation of the σ1 receptor 3D model by computer-assisted design, synthesis, and activity of new σ1 ligands. Mol Pharm 2012;9:3107–26. (b) Franchini S, Battisti UM, Prandi A, et al. Scouting new sigma receptor ligands: synthesis, pharmacological evaluation and molecular modeling of 1,3-dioxolane-based structures and derivatives. Eur J Med Chem 2016;112:1–19.
  • Meyer C, Schepmann D, Yanagisawa S, et al. Pd-catalyzed direct C-H bond functionalization of spirocyclic σ1 ligands: generation of a pharmacophore model and analysis of the reverse binding mode by docking into a 3D homology model of the σ1 receptor. J Med Chem 2012;55:8047–65.
  • Brune S, Schepmann D, Klempnauer KH, et al. The sigma enigma: in vitro/in silico site-directed mutagenesis studies unveil σ1 receptor ligand binding. Biochemistry 2014;53:2993–3003.
  • Schmidt HR, Zheng S, Gurpinar E, et al. Crystal structure of the human σ1 receptor. Nature 2016;532:527–30.