1,385
Views
24
CrossRef citations to date
0
Altmetric
Review Article

Brucella suis carbonic anhydrases and their inhibitors: Towards alternative antibiotics?

, &
Pages 683-687 | Received 24 Jan 2017, Accepted 09 Feb 2017, Published online: 08 Mar 2017

References

  • Pappas G, Papadimitriou P, Akritidis N, et al. The new global map of human brucellosis. Lancet Infect Dis 2006;6:91–9.
  • Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. Lancet Infect Dis 2007;7:775–86.
  • Seleem MN, Boyle SM, Sriranganathan N. Brucellosis: a re-emerging zoonosis. Vet Microbiol 2010;140:392–8.
  • Pappas G, Panagopoulou P, Christou L, Akritidis N. Brucella as a biological weapon. Cell Mol Life Sci 2006;63:2229–36.
  • Perkins SD, Smither SJ, Atkins HS. Towards a Brucella vaccine for humans. FEMS Microbiol Rev 2010;34:379–94.
  • Damiano MA, Bastianelli D, Al Dahouk S, et al. Glutamate decarboxylase-dependent acid resistance in Brucella spp.: distribution and contribution to fitness under extremely acidic conditions. Appl Environ Microbiol 2015;81:578–86.
  • Jiménez de Bagüés MP, Ouahrani-Bettache S, Quintana JF, et al. The new species Brucella microti replicates in macrophages and causes death in murine models of infection. J Infect Dis 2010;202:3–10.
  • DelVecchio VG, Kapatral V, Redkar RJ, et al. The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc Natl Acad Sci USA 2002;99:443–8.
  • Paulsen IT, Seshadri R, Nelson KE, et al. The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci USA 2002;99:13148–53.
  • Halling SM, Peterson-Burch BD, Bricker BJ, et al. Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol 2005;187:2715–26.
  • Köhler S, Foulongne V, Ouahrani-Bettache S, et al. The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci USA 2002;99:15711–16.
  • Winum J-Y, Köhler S, Scozzafava A, et al. Targeting bacterial metalloenzymes: a new strategy for the development of anti-infective agents. Anti-Infect Agents Med Chem 2008;7:169–79.
  • Joseph P, Turtaut F, Köhler S, Winum J-Y. In: Supuran CT, Winum J-Y, eds. Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Wiley: Hoboken; 2009:937–50.
  • Abdo MR, Joseph P, Boigegrain RA, et al. Brucella suis histidinol dehydrogenase: synthesis and inhibition studies of a series of substituted benzylic ketones derived from histidine. Bioorg Med Chem 2007;15:4427–33.
  • Joseph P, Abdo MR, Boigegrain RA, et al. Targeting of the Brucella suis virulence factor histidinol dehydrogenase by histidinol analogues results in inhibition of intramacrophagic multiplication of the pathogen. Antimicrob Agents Chemother 2007;51:3752–5.
  • Lopez M, Köhler S, Winum JY. Zinc metalloenzymes as new targets against the bacterial pathogen Brucella. J Inorg Biochem 2012;11:138–45.
  • Nishimori I, Minakuchi T, Maresca A, et al. The β-carbonic anhydrases from Mycobacterium tuberculosis as drug targets. Curr Pharm Des 2010;29:3300–9.
  • Nishimori I, Onishi S, Takeuchi H, Supuran CT. The alpha and beta classes carbonic anhydrases from Helicobacter pylori as novel drug targets. Curr Pharm Des 2008;14:622–30.
  • Capasso C, Supuran CT. An overview of the selectivity and efficiency of the bacterial carbonic anhydrase inhibitors. Curr Med Chem 2015;22:2130–9.
  • Capasso C, Supuran CT. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin Ther Targets 2015;19:1689–704.
  • Joseph P, Turtaut F, Ouahrani-Bettache S, et al. Cloning, characterization, and inhibition studies of a beta-carbonic anhydrase from Brucella suis. J Med Chem 2010;53:2277–85.
  • Joseph P, Ouahrani-Bettache S, Montero J-L, et al. A new β-carbonic anhydrase from Brucella suis, its cloning, characterization, and inhibition with sulfonamides and sulfamates, leading to impaired pathogen growth. Bioorg Med Chem 2011;19:1172–8.
  • Winum J-Y, Köhler S, Supuran CT. Brucella carbonic anhydrases: new targets for designing anti-infective agents. Curr Pharm Des 2010;16:3310–16.
  • Vullo D, Nishimori I, Scozzafava A, et al. Inhibition studies of a beta-carbonic anhydrase from Brucella suis with a series of water soluble glycosyl sulfanilamides. Bioorg Med Chem Lett 2010;20:2178–82.
  • Maresca A, Scozzafava A, Köhler S, et al. Inhibition of beta-carbonic anhydrases from the bacterial pathogen Brucella suis with inorganic anions. J Inorg Biochem 2012;110:36–9.
  • Riafrecha LE, Vullo D, Supuran CT, Colinas PA. C-glycosides incorporating the 6-methoxy-2-naphthyl moiety are selective inhibitors of fungal and bacterial carbonic anhydrases. J Enzyme Inhib Med Chem 2015;30:857–61.
  • Riafrecha LE, Vullo D, Ouahrani-Bettache S, et al. Inhibition of β-carbonic anhydrases from Brucella suis with C-cinnamoyl glycosides incorporating the phenol moiety. J Enzyme Inhib Med Chem 2015;30:1017–20.
  • Ombouma J, Vullo D, Supuran CT, Winum J-Y. Ferrier sulfamidoglycosylation of glycals catalyzed by nitrosonium tetrafluoroborate: towards new carbonic anhydrase glycoinhibitors. Bioorg Med Chem 2014;22:6353–9.
  • Ombouma J, Vullo D, Köhler S, et al. N-glycosyl-N-hydroxysulfamides as potent inhibitors of Brucella suis carbonic anhydrases. J Enzyme Inhib Med Chem 2015;30:1010–12.
  • Ceruso M, Carta F, Osman SM, et al. Inhibition studies of bacterial, fungal and protozoan β-class carbonic anhydrases with Schiff bases incorporating sulfonamide moieties. Bioorg Med Chem 2015;23:4181–7.
  • Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 2003;100:12989–94.
  • Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 2003;48:77–84.
  • Marcus EA, Moshfegh AP, Sachs G, Scott DR. The periplasmic alpha-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation. J Bacteriol 2005;187:729–38.
  • Stähler FN, Ganter L, Lederer K, et al. Mutational analysis of the Helicobacter pylori carbonic anhydrases. FEMS Immunol Med Microbiol 2005;44:183–9.
  • Porte F, Liautard J-P, Köhler S. Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun 1999;67:4041–7.
  • Smith KS, Ferry JG. Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 2000;24:335–66.
  • Marr AG, Wilson JB. Fixation of C14O2 in amino acids by Brucella abortus. Arch Biochem Biophys 1951;34:442–8.
  • Newton JW, Marr AG, Wilson JB. Fixation of C14O2 into nucleic acid constituents by Brucella abortus. J Bacteriol 1954;67:233–6.
  • Baykam N, Esener H, Ergönül O, et al. In vitro antimicrobial susceptibility of Brucella species. Int J Antimicrob Agents 2004;23:405–7.