2,126
Views
42
CrossRef citations to date
0
Altmetric
Review

Natural extracellular nanovesicles and photodynamic molecules: is there a future for drug delivery?

, , , , , , , & show all
Pages 908-916 | Received 09 May 2017, Accepted 23 May 2017, Published online: 14 Jul 2017

References

  • Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine 2012;7:49–60.
  • Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet 2014;383:60–8.
  • Canton I, Battaglia G. Endocytosis at the nanoscale. Chem Soc Rev 2012;41:2718–39.
  • Fais S, O’Driscoll L, Borras FE, et al. Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano 2016;10:3886–99.
  • Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002;2:569–79.
  • Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 2012;1820:940–8.
  • Yáñez-Mó M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015;4:27066.
  • Zocco D, Ferruzzi P, Cappello F, et al. Extracellular vesicles as shuttles of tumor biomarkers and anti-tumor drugs. Front Oncol 2014;4:267.
  • Properzi F, Logozzi M, Fais S. Exosomes: the future of biomarkers in medicine. Biomark Med 2013;7:769–78.
  • Fais S, Logozzi M, Lugini L, et al. Exosomes: the ideal nanovectors for biodelivery. Biol Chem 2013;394:1–15.
  • Srivastava A, Filant J, Moxley KM, et al. Exosomes: a role for naturally occurring nanovesicles in cancer growth, diagnosis and treatment. Curr Gene Ther 2015;15:182–92.
  • Whiteside TL. Tumor-derived exosomes and their role in tumor-induced immune suppression. Vaccines 2016;4:35.
  • Al-Nedawi K, Meehan B, Micallef J, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008;10:619–24.
  • Atay S, Godwin AK. Tumor-derived exosomes: a message delivery system for tumor progression. Commun Integr Biol 2014;7:e28231.
  • Peinado H, Aleckovic M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012;22:1502.
  • Iero M, Valenti R, Huber V, et al. Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 2008;15:80–8.
  • Viaud S, Terme M, Flament C, et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One 2009;4:e4942.
  • Pitt JM, Charrier M, Viaud S, et al. Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol 2014;193:1006–11.
  • Delcayre A, Shu H, Le Pecq JB. Dendritic cell-derived exosomes in cancer immunotherapy: exploiting nature’s antigen delivery pathway. Expert Rev Anticancer Ther 2005;5:537–47.
  • Lugini L, Cecchetti S, Huber V, et al. Immune surveillance properties of human NK cell-derived exosomes. J Immunol 2012;189:2833–942.
  • Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013;7:7698–710.
  • Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014;35:2383–90.
  • Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011;29:341–5.
  • El-Andaloussi S, Lee Y, Lakhal-Littleton S, et al. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc 2012;7:2112–26.
  • Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 2015;23:812–23.
  • Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol 2015;40:82–8.
  • Federici C, Petrucci F, Caimi S, et al. Exosomes release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One 2014;9:e88193.
  • Iessi E, Logozzi M, Lugini L, et al. Acridine Orange/exosomes increase the delivery and the effectiveness of Acridine Orange in human melanoma cells: a new prototype for theranostics of tumors. J Enzyme Inhib Med Chem 2017;32:648–57.
  • Kusuzaki K, Hosogi S, Ashihara E, et al. Translational research of photodynamic therapy with acridine orange which targets cancer acidity. Curr Pharm Des 2012;18:1414–20.
  • Satonaka H, Kusuzaki K, Shintani K, et al. Extracorporeal photodynamic image detection of mouse osteosarcoma in soft tissues utilizing fluorovisualization effect of acridine orange. Oncology 2007;70:465–73.
  • Kusuzaki K, Murata H, Matsubara T, et al. Clinical outcome of a new photodynamic therapy with acridine orange for synovial sarcomas. Photochem Photobiol 2005;81:705–9.
  • Kusuzaki K, Murata H, Matsubara T, et al. Clinical trial of photodynamic therapy using acridine orange with/without low dose radiation as new limb salvage modality in musculoskeletal sarcomas. Anticancer Res 2005;25:1225–36.
  • Nakamura T, Kusuzaki K, Matsubara T, et al. A new limb salvage surgery in cases of high-grade soft tissue sarcoma using photodynamic surgery, followed by photo- and radiodynamic therapy with acridine orange. J Surg Oncol 2008;97:523–8.
  • Matsubara T, Kusuzaki K, Matsumine A, et al. A new therapeutic modality involving acridine orange excitation by photon energy used during reduction surgery for rhabdomyosarcomas. Oncol Rep 2009;21:89–94.
  • Matsubara T, Kusuzaki K, Matsumine A, et al. Clinical outcomes of minimally invasive surgery using acridine orange for musculoskeletal sarcomas around the forearm, compared with conventional limb salvage surgery after wide resection. J Surg Oncol 2010;102:271–5.
  • Matsubara T, Kusuzaki K, Matsumine A, et al. Photodynamic therapy with acridine orange in musculoskeletal sarcomas. J Bone Joint Surg Br 2010; 92:760–2.
  • Kusuzaki K, Matsubara T, Satonaka H, et al. Intraoperative photodynamic surgery (iPDS) with acridine orange for musculoskeletal sarcomas. Cureus 2014;6:e204.
  • Jockusch S, Lee D, Turro NJ, Leonard EF. Photo-induced inactivation of viruses: adsorption of methylene blue, thionine, and thiopyronine on qbeta bacteriophage. Proc Natl Acad Sci USA 1996;93:7446–51.
  • Phoenix DA, Harris F. Phenothiazinium-based photosensitizers: antibacterials of the future? Trends Mol Med 2003;9:283–5.
  • Harris F, Chatfield LK, Phoenix DA. Phenothiazinium based photosensitisers—photodynamic agents with a multiplicity of cellular targets and clinical applications. Curr Drug Targets 2005;6:615–27.
  • Tuite EM, Kelly JM. Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J Photochem Photobiol B Biol 1993;21:103–24.
  • Millson CE, Wilson M, Macrobert AJ, et al. The killing of helicobacter pylori by low-power laser light in the presence of a photosensitiser. J Med Microbiol 1996;44:245–52.
  • Tardivo JP, del Giglio A, de Oliveira CS, et al. Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn Photodyn Ther 2005;2:175–91.
  • Soukos NS, Chen PS-Y, Morris JT, et al. Photodynamic therapy for endodontic disinfection. J Endod 2006;32:979–84.
  • De Freitas LM, Soares CP, Fontana CR. Synergistic effect of photodynamic therapy and cisplatin: a novel approach for cervical cancer. J Photochem Photobiol B 2014;140:365–73.
  • Wagner M, Suarez ER, Theodoro TR, et al. Methylene blue photodynamic therapy in malignant melanoma decreases expression of proliferating cell nuclear antigen and heparanases. Clin Exp Dermatol 2012;37:527–33.
  • Samy NA, Salah MM, Ali MF, Sadek AM. Effect of methylene blue-mediated photodynamic therapy for treatment of basal cell carcinoma. Laser Med Sci 2014;30:109–15.
  • Disanto AR, Wagner JG. Pharmacokinetics of highly ionized drugs. II. Methylene blue-absorption, metabolism, and excretion in man and dog after oral administration. J Pharm Sci 1972;61:1086–90.
  • Calixto GM, Bernegossi J, de Freitas LM, et al. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 2016;21:342.
  • Makinen M, Forbes PD, Stenback F. Quinolone antibacterials: a new class of photochemical carcinogens. J Photochem Photobiol B Biol 1997;37:182–7.
  • Klecak G, Urbach F, Urwyler H. Fluoroquinolone antibacterials enhance UVA-induced skin tumors. J Photochem Photobiol B Biol 1997;37:174–81.
  • Johnson BE, Gibbs NK, Ferguson J. Quinolone antibiotic with potential to photosensitize skin tumorigenesis. J Photochem Photobiol B Biol 1997;37:171–3.
  • Traynor NJ, Barratt MD, Lovell WW, et al. Comparison of an in vitro cellular phototocity model against controlled clinical trials of fluoroquinolone skin phototoxicity. Toxicol In Vitro 2000;14:275–83.
  • Ferguson J, Dawe R. Phototocity in quinolones: comparison of ciprofloxacin and grepafloxacin. J Antimicrob Chemother 1997;40:93–8.
  • Ferguson J, Johnson BE. Clinical and laboratory studies of the photosensitizing potential of norfloxacin, a 4-quinolone broad-spectrum antibiotic. Br J Dermatol 1993;128:285–395.
  • Ferguson J, McEwen J, Al-Ajmi H, et al. A comparison of the photosensitisitizing potential of trovafloxacin with that of other quinolones in healthy subjects. J Antimicrob Chemother 2000;45:503–9.
  • Leone R, Venegoni M, Motola D, et al. Adverse druf reactions related to the use of fluoroquinolone antimicrobials: an analysis of spontaneous reports and fluoroquinolone consumption data from three italian regions. Drug Saf 2003;26:109–20.
  • Lhiaubet-Vallet V, Cuquerella MC, Castell JV, et al. Triplet excited fluoroquinolones as mediators for thymine cyclobutane dimer formulation in DNA. J Phys Chem B 2007;111:7409–14.
  • Lhiaubet-Vallet V, Bosca F, Miranda MA. Photosensitized DNA damage: the case of fluoroquinolones. Photochem Photobiol 2009;85:861–8.
  • Zhang P, Song X, Li H, et al. Transient species of several fluoroquinolones and their reactions with aminoacids. J Photochem Photobiol A Chem 2010;215:191–5.
  • Li W, Zhang H, Guo X, et al. Gold nanospheres-stabilized indocyanine green as a synchronous photodynamic-photothermal therapy platform that inhibits tumor growth and metastasis. ACS Appl Mater Interfaces 2017;9:3354–67.
  • Şahin B, Topal SZ, Atilla D. Synthesis, photophysical and photochemical properties of a set of silicon phthalocyanines bearing anti-inflammatory groups. J Fluoresc 2017;27:407–16.
  • Bharathiraja S, Seo H, Manivasagan P, et al. In vitro photodynamic effect of phycocyanin against breast cancer cells. Molecules 2016;21:1470.
  • Allen CM, Sharman WM, van Lier JE. Current status of phthalocyanines in the photodynamic therapy of cancer. J Porphyr Phthalocyanines 2001;5:161–9.
  • Ranyuk E, Cauchon N, Klarskov K, et al. Phthalocyanine-peptide conjugates: receptor-targeting bifunctional agents for imaging and photodynamic therapy. J Med Chem 2013;56:1520–34.
  • Swavey S, Tran M, Porphyrin and phthalocyanine photosensitizers as pdt agents: a new modality for the treatment of melanoma. In: David LM, ed. Recent advances in the biology, therapy and management of melanoma. INTECH Open Access Publisher: Rijeka, Croatia; 2013. p. 253–82.
  • Muehlmann LA, Ma BC, Longo JPF, et al. Aluminum-phthalocyanine chloride associated to poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as a new third-generation photosensitizer for anticancer photodynamic therapy. Int J Nanomed 2014;9:1199–213.
  • Zasedatelev AV, Dubinina TV, Krichevsky DM, et al. Plasmon-induced light absorption of phthalocyanine layer in hybrid nanoparticles: enhancement factor and effective spectra. J Phys Chem C 2016;120:1816–23.
  • Nombona N, Antunes E, Chidawanyika W, et al. Synthesis, photophysics and photochemistry of phthalocyanine-ɛ-polylysine conjugates in the presence of metal nanoparticles against staphylococcus aureus. J Photochem Photobiol A 2012;233:24–33.
  • Rodriguez L, Bruijn HS, Di Venosa G, et al. Porphyrin synthesis from aminolevulinic acid esters in endothelial cells and its role in photodynamic therapy. J Photochem Photobiol B 2009;96:249–54.
  • Nicolodelli G, Kurachi C, Rego RF, et al. Evidence of 5-aminolevulinic acid (ALA) penetration increase due to microdrilling in soft tissue using femtosecond laser ablation. Lasers Med Sci 2012;27:1067–71.
  • Rodrigues PG, Menezes PFC, Fujita AKL, et al. Assessment of ALA-induced PPIX production in porcine skin pretreated with microneedles. J Biophotonics 2015;8:723–9.
  • Ye X, Yin H, Lu Y, et al. Evaluation of hydrogel suppositories for delivery of 5-aminolevulinic acid and hematoporphyrin monomethyl ether to rectal tumors. Molecules 2016;21:1347.
  • Porcu EP, Salis A, Gavini E, et al. Indocyanine green delivery systems for tumour detection and treatments. Biotechnol Adv 2016;34:768–89.
  • Nakamura Y, Ohler ZW, Householder D, et al. Near infrared photoimmunotherapy in a transgenic mouse model of spontaneous epidermal growth factor receptor (EGFR)-expressing lung cancer. Mol Cancer Ther 2017;16:408–14.
  • Raab O. On the effect of fluorescent substances on infusoria. Z Biol 1900;39:524–6.
  • Vrouenreats MB, Visser GWM, Snow GB, van Dongen GAMS. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res 2003;23:505–22.
  • Acheson RM. Acridines. New York, London, Sydney, Toronto: John Wiley & Sons; 1973.
  • Lewis RM, Goland PP. In vivo staining and retardation of tumors in mice by acridine compounds. Am J Med Sci 1948;215:282–9.
  • Korgaonkar K, Sukhatankara J. Anti-tumour activity of the fluorescent dye, acridine orange, on yoshida sarcoma (ascites). Br J Cancer 1963;17:471–3.
  • Tomson SH, Emmett EA, Fox SH. Photodestruction of mouse epithelial tumors after oral acridine orange and argon laser. Cancer Res 1974;34:3124–47.
  • Tatsuta M, Yamamura H, Yamamoto R, et al. Destruction of implanted gastric tumors in rats by acridine orange photoactivation with an argon laser. Eur J Cancer Clin Oncol 1984;20:543–52.
  • Prosser E, Cox D, O’Kennedy R, et al. Effects of coumarins, haematoporphyrins and acridine orange on the viability and growth of Landshutz ascites tumour cells, in the presence and absence of photoradiation. Cancer Lett 1990;52:71–7.
  • Ishikawa S, Nemoto R, Kanoh S, et al. Photodynamic inactivation of bladder cancer cells (MGH-U1) sensitized with acridine orange and irradiated by argon laser. Tohoku J Exp Med 1984;144:265–71.
  • Zdolsek JM. Acridine orange-mediated photodamage to cultured cells. Apmis 1993;101:127–32.
  • Zdolsek JM, Olsson GM, Brunk UT. Photooxidative damage to lysosomes of cultured macrophages by acridine orange. Photochem Photobiol 1990;51:67–76.
  • Iwamoto Y, Itoyama T, Yasuda K, et al. Photodynamic DNA strand breaking activities of acridine compounds. Biol Pharm Bull 1993;16:1244–7.
  • Uggla AH. The induction of chromosomal aberrations and SCEs by visible light in combination with dyes. II. Cell cycle dependence, and the effect of hydroxyl radical scavengers during light exposure in cultures of Chinese hamster ovary cells sensitized with acridine orange. Mutat Res 1990;231:233–42.
  • Cools AA, Jansen LHM. Fluorescence response of acridine orange to changes in pH gradients across liposome membranes. Experimentia 1986;42:954–6.
  • Ibrahim ME, Pedersen H. Acridine orange fluorescence as male fertility test. Arch Andrology 1988;20:125–9.
  • Zampieri A, Greenberg J. Mutagenesis by acridine orange and proflavine in Escherichia coli strain S. Mutat Res 1965;2:552–6.
  • McCann J, Choi E, Yamasaki E, Ames BN. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci USA 1975;72:5135–9.
  • Sastry KS, Gordon MP. The photodynamic inactivation of tobacco mosaic virus and its ribonucleic acid by acridine orange. Biochim Biophys Acta 1966;129:32–41.
  • Chessin M. Photodynamic inactivation of infectious nucleic acid. Science 1960;132:1840–1.
  • Giorgio A, Rambaldi M, Maccario P, et al. Detection of microorganisms in clinical specimens using slides prestained with acridine orange (AOS). Microbiologica 1989;12:97–100.
  • Rickman L, Long G, Oberst R, et al. Rapid diagnosis of malaria by acridine orange staining of centrifuged parasites. Lancet 1989;1:68–71.
  • Barder G, Stiller D, Ruffert K. Fluorochrome stains for histological diagnosis of visceral mycoses. Nature 1965; 208:796–7.
  • Kapuscinski J, Darzynkiewicz Z, Melamed MR. Interactions of acridine orange with nucleic acids. Properties of complexes of acridine orange with single stranded ribonucleic acid. Biochem Pharmacol 1983;32:3679–94.
  • Amagasa J. Mechanisms of photodynamic inactivation of acridine orange-sensitized transfer RNA: participation of singlet oxygen and base damage leading to inactivation. J Radiat Res (Tokyo) 1986;27:339–51.
  • Zelenin AV. Fluorescence microscopy of lysosomes and related structures in living cells. Nature 1966;212:425–6.
  • Kusuzaki K, Murata H, Takeshita H, et al. Intracellular binding sites of acridine orange in living osteosarcoma cells. Anticancer Res 2000;20:971–6.
  • Van Duuren BL, Sivak A, Katz C, Melchionne S. Tumorigenicity of acridine orange. Br J Cancer 1969;23:587–90.
  • Satonaka H, Kusuzaki K, Shintani K, et al. Extracorporeal photodynamic image detection of mouse osteosarcoma in soft tissues utilizing fluorovisualization effect of acridine orange. Oncology (Bazel) 2007;70:465–73.
  • Bragagni M, Carta F, Osman SM, et al. Synthesis of an acridine orange sulfonamide derivative with potent carbonic anhydrase IX inhibitory action. J Enzyme Inhib Med Chem 2017;32:701–6.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81.
  • Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 2011;10:767–77.
  • Monge-Fuentes V, Muehlmann LA, Longo JP, et al. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: a potential treatment for melanoma. J Photochem Photobiol B 2017;166:301–10.
  • Inoue K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int J Urol 2017;24:97–101.
  • Sailer R, Strauss WS, Wagner M, et al. Relation between intracellular location and photodynamic efficacy of 5-aminolevulinic acid-induced protoporphyrin IX in vitro. Comparison between human glioblastoma cells and other cancer cell lines. Photochem Photobiol Sci 2007;6:145–51.
  • Inoue K, Matsuyama H, Fujimoto K, et al. The clinical trial on the safety and effectiveness of the photodynamic diagnosis of non-muscle-invasive bladder cancer using fluorescent light-guided cystoscopy after oral administration of 5-aminolevulinic acid (5-ALA). Photodiagnosis Photodyn Ther 2016;13:91–6.
  • Gao M, Hu A, Sun X, et al. Photosensitizer decorated red blood cells as an ultrasensitive light-responsive drug delivery system. ACS Appl Mater Interfaces 2017;9:5855–63.
  • Correa JC, Bagnato VS, Imasato H, Perussi JR. Previous illumination of a water soluble chlorine photosensitizer increases its cytotoxicity. Laser Phys 2012;22:1387–94.
  • Parihar A, Dube A, Gupta PK. Conjugation of chlorin p(6) to histamine enhances its cellular uptake and phototoxicity in oral cancer cells. Cancer Chemother Pharmacol 2010;68:359–69.
  • Master A, Livingston M, Sen Gupta A. Photodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges. J Control Release 2013;168:88–102.
  • Bharathiraja S, Bharathiraja S, Seo H, et al. In vitro photodynamic effect of phycocyanin against breast cancer cells. Molecules 2016;21:1470.
  • Conte C, Scala A, Siracusano G, et al. Nanoassembly of an amphiphilic cyclodextrin and Zn(II)-phthalocyanine with the potential for photodynamic therapy of cancer. RSC Advances 2014;4:43903–11.
  • Lourenco LMO, Pereira PM, Maciel E, et al. Amphiphilic phthalocyanine-cyclodextrin conjugates for cancer photodynamic therapy. Chem Commun 2014;50:8363–6.
  • Medina FG, Marrero JG, Macías-Alonso M, et al. Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Nat Prod Rep 2015;32:1472–507.
  • Wu H, Zeng F, Zhang H, et al. A nanosystem capable of releasing a photosensitizer bioprecursor under two-photon irradiation for photodynamic therapy. Adv Sci (Weinh) 2015;3:1500254.
  • Lee WH, Loo CY, Bebawy M, et al. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 2013;11:338–78.
  • Haukvik T, Bruzell E, Kristensen S, Tønnesen HH. Photokilling of bacteria by curcumin in selected polyethylene glycol 400 (peg 400) preparations. Studies on curcumin and curcuminoids, xli. Pharmazie 2010;65:600–6.
  • LoTempio MM, Veena MS, Steele HL, et al. Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin Cancer Res 2005;11:6994–7002.
  • Duco W, Grosso V, Zaccari D, Soltermann AT. Generation of ROS mediated by mechanical waves (ultrasound) and its possible applications. Methods 2016;109:141–8.
  • Schmitt J, Heitz V, Sour A, et al. Diketopyrrolopyrrole-porphyrin conjugates with high two-photon absorption and singlet oxygen generation for two-photon photodynamic therapy. Angew Chem Int Ed Engl 2015;54:169–73.
  • Letuta SN, Pashkevich SN, Ishemgulov AT, et al. Delayed luminescence of erythrosine in biological tissue and photodynamic therapy dosimetry. J Photochem Photobiol B 2016;163:232–6.
  • Kleemann B, Loos B, Scriba TJ, et al. St John’s wort (hypericum perforatum l.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death. PLoS One 2014;9:e103762.
  • Maduray K, Davids L. The anticancer activity of hypericin in photodynamic therapy. J Bioanal Biomed 2011;S6:004.
  • Barathan M, Mariappan V, Shankar EM, et al. Hypericin-photodynamic therapy leads to interleukin-6 secretion by hepg2 cells and their apoptosis via recruitment of bh3 interacting-domain death agonist and caspases. Cell Death Dis 2013;4:e697.
  • Roozeboom MH, Aardoom MA, Nelemans PJ, et al. Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up. J Am Acad Dermatol 2013;69:280–7.
  • Huntosova V, Stroffekova K. Hypericin in the dark: foe or ally in photodynamic therapy? Cancers (Basel) 2016;8:pii:E93.
  • De Freitas LM, Soares CP, Fontana CR. Synergistic effect of photodynamic therapy and cisplatin: a novel approach for cervical cancer. J Photochem Photobiol B Biol 2014;140:365–73.
  • Samy NA, Salah MM, Ali MF, Sadek AM. Effect of methylene blue-mediated photodynamic therapy for treatment of basal cell carcinoma. Lasers Med Sci 2014;30:109–15.
  • Arnbjerg J, Jiménez-Banzo A, Paterson MJ, et al. Two-photon absorption in tetraphenylporphycenes: are porphycenes better candidates than porphyrins for providing optimal optical properties for two-photon photodynamic therapy? J Am Chem Soc 2007;129:5188–99.
  • Jeong K, Park S, Lee YD, et al. Size-engineered biocompatible polymeric nanophotosensitizer for locoregional photodynamic therapy of cancer. Colloids Surf B Biointerfaces 2016;144:303–10.
  • Broughton LJ, Giuntini F, Savoie H, et al. Duramycin-porphyrin conjugates for targeting of tumour cells using photodynamic therapy. J Photochem Photobiol B 2016;163:374–84.
  • Huang P, Qian X, Chen Y, et al. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J Am Chem Soc 2017;139:1275–84.
  • Hammerer F, Garcia G, Chen S, et al. Synthesis and characterization of glycoconjugated porphyrin triphenylamine hybrids for targeted two-photon photodynamic therapy. J Org Chem 2014;79:1406–17.
  • Costa LD, e Silva Jde A, Fonseca SM, et al. Photophysical characterization and in vitro phototoxicity evaluation of 5,10,15,20-tetra(quinolin-2-yl)porphyrin as a potential sensitizer for photodynamic therapy. Molecules 2016;21:439.
  • Kessel D, Thompson P. Purification and analysis of ematoporphyrin and hematoporphyrin derivative by gel exclusion and reverse-phase chromatography. Photochem Photobiol 1987;46:1023–5.
  • Shi R, Li C, Jiang Z, et al. Preclinical study of antineoplastic sinoporphyrin sodium-PDT via in vitro and in vivo models. Molecules 2017;22:112.
  • Malatesti N, Harej A, Kraljević Pavelić S, et al. Synthesis, characterisation and in vitro investigation of photodynamic activity of 5-(4-octadecanamidophenyl)-10,15,20-tris(N-methylpyridinium-3-yl) porphyrin trichloride on HeLa cells using low light fluence rate. Photodiagnosis Photodyn Ther 2016;15:115–126.
  • Drobizhev M, Stepanenko Y, Dzenis Y, et al. Extremely strong near-IR two-photon absorption in conjugated porphyrin dimers: quantitative description with three-essential-states model. J Phys Chem B 2005;109:7223–36.
  • KR, PR Fernandez A, Laila SP, B, et al. Synthesis, spectral characterization, crystal structure, cytotoxicity and apoptosis – inducing activity of two derivatives of 2-hydroxy-1,4-naphthaquinone. Photodiagnosis Photodyn Ther 2017;17:250–9.