1,313
Views
24
CrossRef citations to date
0
Altmetric
Research Paper

Antimycobacterial activity of nitrogen heterocycles derivatives: 7-(pyridine-4-yl)-indolizine derivatives. Part VII8–12

, , &
Pages 1291-1298 | Received 11 Jul 2017, Accepted 21 Aug 2017, Published online: 26 Oct 2017

References

  • Dye C, Williams BG. The population dynamics and control of tuberculosis. Science 2010;328:856–61.
  • WHO. Global Tuberculosis Report. Geneva, Switzerland: WHO; 2016. Available from: http://www.who.int/tb/publications/global_report/en/ [last accessed 10 Oct 2017].
  • Raviglione M, Marais B, Floyd K, et al. Scaling up interventions to achieve global tuberculosis control: progress and new developments. Lancet 2012;397:1902–13.
  • Ma Z, Lienhardt C, Mclleron H, et al. Global tuberculosis drug development pipeline: the need and the reality. Lancet 2010;5:1–10.
  • Crabb C. Global alliance at full steam for new TB drugs. Bull World Health Organ 2002;80:517.
  • Dulla B, Wan B, Franzblau SG, et al. Construction and functionalization of fused pyridine ring leading to novel compounds as potential antitubercular agents. Bioorg Med Chem Lett 2012;22:4629–35.
  • Moraski GC, Markley LD, Chang M, et al. Generation and exploration of new classes of antitubercular agents: the optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo[1,2-a]pyridines and isomeric 5,6-fused scaffolds. Bioorg Med Chem 2012;20:2214–20.
  • Danac R, Mangalagiu II. Antimycobacterial activity of nitrogen heterocycles derivatives: bipyridine derivatives. Part III. Eur J Med Chem 2014;74:664–70.
  • Mantu D, Luca C, Moldoveanu C, et al. Synthesis and antituberculosis activity of some new pyridazine derivatives. Part II. Eur J Med Chem 2010;45:5164–8.
  • Al Matarneh CM, Ciobanu CI, Mangalagiu II, et al. Design, synthesis and antimycobacterial evaluation of some new azaheterocycles with 4,7-phenanthroline skeleton. Part VI. J Serb Chem Soc 2016;81:133–40.
  • Danac R, Al Matarneh CM, Shova S, et al. New indolizinees with phenanthroline skeleton: synthesis, structure, antimycobacterial and anticancer evaluation. Bioorg Med Chem 2015;23:2318–27.
  • Danac R, Daniloaia T, Antoci V, et al. Design, synthesis and antimycobacterial activity of some new azaheterocycles: phenanthroline with p-halo-benzoyl Skeleton. Part V. Lett Drug Des Discov 2015;12:14–17.
  • Butnariu RM, Mangalagiu II. New pyridazine derivatives: synthesis, chemistry and biological activity. Bioorg Med Chem 2009;17:2823–9.
  • Caprosu M, Butnariu R, Mangalagiu II. Synthesis and antimicrobial activity of some new pyridazine derivatives. Heterocycles 2005;65:1871–9.
  • Rotaru A, Druta I, Avram E, et al. Synthesis and properties of fluorescent 1,3-substituted mono and biindolizines. Arkivoc 2009;13:287–99.
  • Dholariya HR, Patel KS, Patel JC, et al. Dicoumarol complexes of Cu (II) based on 1, 10-phenanthroline: synthesis, X-ray diffraction studies, thermal behaviour and biological evaluation. Spectrochim Acta A 2013;108:319–28.
  • Rotaru A, Danac R, Druta I, et al. The synthesis and the biological activity of diquaternary salts derivatives of 4,4`-bipyridyl. Rev Chim (Bucharest) 2005;56:179–83.
  • Ollinger J, Bailey MA, Moraski GC, et al. A dual read-out assay to evaluate the potency of compounds active against Mycobacterium tuberculosis. PLoS One 2013;8:e60531.
  • Zelmer A, Carroll P, Andreu N, et al. A new in vivo model to test anti-tuberculosis drugs using fluorescence imaging. J Antimicrob Chemother 2012;67:1948–60.
  • Carroll P, Schreuder LJ, Muwanguzi-Karugaba J, et al. Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS One 2010;5:e9823.
  • Lambert RJ, Pearson J. Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J Appl Microbiol 2000;88:788–90.
  • Kuti JL. Optimizing Antimicrobial Pharmacodynamics: a guide for stewardship program. Rev Med Clin Condes 2016;27:615–24.
  • Cho SH, Warit S, Wan B, et al. Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 2007;51:1380–5.
  • Andreu N, Zelmer A, Fletcher T, et al. Optimisation of bioluminescent reporters for use with mycobacteria. PLoS One 2010;5:e10777.
  • Wayne LG. In vitro model of hypoxically induced nonreplicating persistence of Mycobacterium tuberculosis. In: Parish T, Stoker NG, eds. Mycobacterium tuberculosis protocols. Totowa, NJ: Humana Press; 2001:247–270.
  • Favrot L, Ronning DR. Targeting the mycobacterial envelope for tuberculosis drug development. Expert Rev Anti Infect Ther 2012;10:1023–36.
  • Franzblau SG, Witzig RS, McLaughlin JC, et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue Assay. J Clin Microbiol 1998;36:362–6.
  • Banker MJ, Clark TH, Williams JA. Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding. J Pharm Sci 2003;92:967–74.
  • Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 2010;9:929–39.
  • Ramesh R, Shingare RD, Kumar V, et al. Repurposing of a drug scaffold: Identification of novel sila analogues of rimonabant as potent antitubercular agents. Eur J Med Chem 2016;122:723–30.
  • Lakshminarayana SB, Huat TB, Ho PC, et al. Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents. J Antimicrob Chemother 2015;70:857–67.
  • Stewart BH, Chan OH, Lu RH, et al. Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: relationship to absorption in humans. Pharm Res 1995;12:693–9.
  • Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 2001;46:27–43.
  • Yee S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth. Pharm Res 1997;14:763–6.
  • Endres CJ, Hsiao P, Chung FS, et al. The role of transporters in drug interactions. Eur J Pharm Sci 2006;27:501–17.
  • Balimane PV, Han YH, Chong S. Current industrial practices of assessing permeability and P-glycoprotein interaction. APS J 2006;8:E1–E13.
  • Ogu CC, Maxa JL. Drug interactions due to cytochrome P450. *Proc (Bayl Univ Med Cent) 2000;13:421–3.
  • Kim MJ, Kim H, Cha IJ, et al. High-throughput screening of inhibitory potential of nine cytochrome P450 enzymes in vitro using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2005;19:2651–8.
  • Walsky RL, Obach RS. Validated assays for human cytochrome P450 activities. Drug Metab Dispos 2004;32:647–60.
  • Fowler S, Zhang H. In vitro evaluation of reversible and irreversible cytochrome P450 inhibition: current status on methodologies and their utility for predicting drug–drug interactions. AAPS J 2008;10:410–24.
  • Houston JB. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol 1994;47:1469–79.
  • Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and non-specific binding to microsomes. Drug Metab Dispos 1999;27:1350–9.
  • Di L, Kerns EH, Ma XJ, et al. Applications of high throughput microsomal stability assay in drug discovery. Comb Chem High Throughput Screen 2008;11:469–76.
  • Crouch SP, Kozlowski R, Slater KJ, et al. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 1993;160:81–8.
  • Lundin A, Hasenson M, Persson J, et al. Estimation of biomass in growing cell lines by adenosine triphosphate assay. Meth Enzymol 1986;133:27–42.
  • Maehara Y, Anai H, Tamada R, et al. The ATP assay is more sensitive than the succinate dehydrogenase inhibition test for predicting cell viability. Eur J Cancer Clin Oncol 1987;23:273–6.
  • Slater K. Cytotoxicity tests for high-throughput drug discovery. Curr Opin Biotechnol 2001;12:70–4.