1,498
Views
26
CrossRef citations to date
0
Altmetric
Short Communication

Resveratrol-based cinnamic ester hybrids: synthesis, characterization, and anti-inflammatory activity

, , , , &
Pages 1282-1290 | Received 09 Aug 2017, Accepted 14 Sep 2017, Published online: 26 Oct 2017

References

  • Ferrero-Miliani L, Nielsen OH, Andersen PS, et al. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 2007;147:227–35.
  • Zhang Z, Rigas B. NF-kappaB, inflammation and pancreatic carcinogenesis: NF-kappaB as a chemoprevention target (review). Int J Oncol 2006;29:185–92.
  • Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 2007;8:49–62.
  • Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002;105:1135.
  • Azizi G, Navabi SS, Alshukaili A, et al. The role of inflammatory mediators in the pathogenesis of Alzheimer’s disease. Sultan Qaboos Univ Med J 2015;15:305–16.
  • Wu J, Li J, Cai Y, et al. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J Med Chem 2011;54:8110–23.
  • Chen LZ, Sun WW, Bo L, et al. New arylpyrazoline-coumarins: Synthesis and anti-inflammatory activity. Eur J Med Chem 2017;138:170–81.
  • Lv XH, Ren ZL, Liu P, et al. Design, synthesis and biological evaluation of novel nicotinamide derivatives bearing a substituted pyrazole moiety as potential SDH inhibitors. Pest Manag Sci 2017; 73:1585–92.
  • Gakh AA, Yu AN, Kiselevsky MV, et al. ChemInform abstract: dihydro-resveratrol—a potent dietary polyphenol. Cheminform 2011;42.
  • Pervaiz S. Chemotherapeutic potential of the chemopreventive phytoalexin resveratrol. Drug Resist Updat 2004;7:333–44.
  • Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006;5:493–506.
  • Csuk R, Albert S, Siewert B, Schwarz S. Synthesis and biological evaluation of novel (E) stilbene-based antitumor agents. Eur J Med Chem 2012;54:669–78.
  • Androutsopoulos VP, Ruparelia KC, Papakyriakou A, et al. Anticancer effects of the metabolic products of the resveratrol analogue, DMU-212: structural requirements for potency. Eur J Med Chem 2011;46:2586–95.
  • İlhami G. Antioxidant properties of resveratrol: a structure-activity insight. Innovative Food Sci Emerg Technol 2010;11:210–18.
  • Innocenti A, Gülçin I, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Antioxidant polyphenols effectively inhibit mammalian isoforms I-XV. Bioorg Med Chem Lett 2010;20:5050–3.
  • Lolicato F, Raudino A, Milardi D, La RC. Resveratrol interferes with the aggregation of membrane-bound human-IAPP: A molecular dynamics study. Eur J Med Chem 2015;92:876–81.
  • Evers F, Jeworrek C, Tiemeyer S, et al. Elucidating the mechanism of lipid membrane-induced IAPP fibrillogenesis and its inhibition by the red wine compound resveratrol: a synchrotron X-ray reflectivity study. J Am Chem Soc 2009;131:9516–21.
  • Sciacca MF, Chillemi R, Sciuto S, et al. Interactions of two O-phosphorylresveratrol derivatives with model membranes. Arch Biochem Biophys 2012;521:111–16.
  • Liu CW, Sung HC, Lin SR, et al. Resveratrol attenuates ICAM-1 expression and monocyte adhesiveness to TNF-α-treated endothelial cells: evidence for an anti-inflammatory cascade mediated by the miR-221/222/AMPK/p38/NF-κB pathway. Sci Rep 2017;7:44689.
  • Poulsen MM, Fjeldborg K, Ornstrup MJ, et al. Resveratrol and inflammation: Challenges in translating pre-clinical findings to improved patient outcomes. Biochim Biophys Acta 2015;1852:1124–36.
  • Das S, Das DK. Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets 2007;6:168–73.
  • Wang G, Hu Z, Fu Q, et al. Resveratrol mitigates lipopolysaccharide-mediated acute inflammation in rats by inhibiting the TLR4/NF-κBp65/MAPKs signaling cascade. Sci. Rep 2017;7:45006.
  • Capiralla H, Vingtdeux V, Zhao H, et al. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem 2012;120:461–72.
  • Serra D, Rufino AT, Mendes AF, et al. Resveratrol modulates cytokine-induced JAK/STAT activation more efficiently than 5-aminosalicylic acid: an in vitro approach. PLoS One 2014;9:109048.
  • Wang Y, Cao J, Fan Y, et al. Artemisinin inhibits monocyte adhesion to HUVECs through the NF-κB and MAPK pathways in vitro. Int J Mol Med 2016;37:1567–75.
  • Zhu YD, Fu JS, Shurlknight KL, et al. Novel resveratrol-based aspirin prodrugs: synthesis, metabolism, and anticancer activity. J Med Chem 2015;58:6494–506.
  • De P, Baltas M, Bedos-Belval F. Cinnamic acid derivatives as anticancer agents-a review. Curr Med Chem 2011;18:1672–703.
  • Sova M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini-Rev Med Chem 2012;12:749.
  • Giles F, Fischer T, Cortes J, et al. A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 2006;12:4628–35.
  • Gunia-Krzyżak A, Pańczyk K, Waszkielewicz AM, Marona H. Cinnamamide derivatives for central and peripheral nervous system disorders–a review of structure-activity relationships. Chemmedchem 2015;10:1302–25.
  • Musso DL, Cochran FR, Kelley JL, et al. Indanylidenes. 1. Design and synthesis of (E)-2-(4,6-difluoro-1-indanylidene)acetamide, a potent, centrally acting muscle relaxant with antiinflammatory and analgesic activity. J Med Chem 2003;46:399–408.
  • Chen GZ, Zhang YL, Liu X, et al. Discovery of a New Inhibitor of Myeloid Differentiation 2 from cinnamamide derivatives with anti-inflammatory activity in sepsis and acute lung injury. J Med Chem 2016;59:2436–51.
  • Yao RS, Lu XQ, Guan QX, et al. Synthesis and biological evaluation of some novel resveratrol amide derivatives as potential anti-tumor agents. Eur J Med Chem 2013;62:222–31.
  • Tang ML, Zhong C, Liu ZY, et al. Discovery of novel sesquistilbene indanone analogues as potent anti-inflammatory agents. Eur J Med Chem 2016;113:63–74.
  • Wang ZS, Chen LZ, Zhou HP, et al. Diarylpentadienone derivatives (curcumin analogues): Synthesis and anti-inflammatory activity. Bioorg Med Chem Lett 2017;27:1803–7.
  • Anning PB, Coles B, Morton J, et al. Nitric oxide deficiency promotes vascular side effects of cyclooxygenase inhibitors. Blood 2006;108:4059–62.
  • Shih RH, Wang CY, Yang CM. NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 2015;8:77.
  • Kurumbail RG, Stevens AM, Gierse JK, et al. Structural basis for selective inhibition of cyclooxyenase-2 by anti-inflammatory agents. Nature 1996; 384:644–8.
  • Wu GS, Robertson DH, Brooks CL, III, Vieth M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm). J Comput Chem 2003;24:1549–62.
  • Discovery studio. San Diego (CA): Accelrys Software Inc; 2017. Available from: http://accelrys.com/products/collaborative-science/biovia-discovery-studio [last accessed 24 Sept 2017].