2,740
Views
16
CrossRef citations to date
0
Altmetric
Research Papers

Repurposing FDA-approved sulphonamide carbonic anhydrase inhibitors for treatment of Neisseria gonorrhoeae

, , ORCID Icon, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 51-61 | Received 30 Aug 2021, Accepted 04 Oct 2021, Published online: 11 Dec 2021

References

  • Newman L, Rowley J, Vander HS, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLOS One 2015;10:e0143304.
  • World Health Organization. Multi-drug resistant gonorrhoea Fact Sheet. World Health Organization Fact Sheets. Geneva, Switzerland 2020. https://www.who.int/news-room/fact-sheets/detail/multi-drug-resistant-gonorrhoea
  • Bowen VB, Braxton J, Davis DW, et al. Sexually transmitted disease surveillance 2018. Atlanta (GA): Center for Disease Control and Prevention; 2019.
  • Rice PA, Shafer WM, Ram S, Jerse AE. Neisseria gonorrhoeae: drug resistance, mouse models, and vaccine development. Annual Rev Microbiol 2017;71:665–86.
  • Wi T, Lahra MM, Ndowa F, et al. Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLOS Med 2017;14:e1002344–16.
  • Derbie A, Mekonnen D, Woldeamanuel Y, Abebe T. Azithromycin resistant gonococci: a literature review. Antimicrob Resist Infect Control 2020;9:1–7.
  • Gernert KM, Seby S, Schmerer MW, et al. Azithromycin susceptibility of Neisseria gonorrhoeae in the USA in 2017: a genomic analysis of surveillance data. Lancet Microbe 2020;1:e154–e164.
  • Cyr SS, Barbee L, Workowski KA, et al. Update to CDC's treatment guidelines for gonococcal infection, 2020. MMWR Morb Mortal Wkly Rep 2020;69:1911–6.
  • Fifer H, Natarajan U, Jones L, et al. Failure of dual antimicrobial therapy in treatment of gonorrhea. New Engl J Med 2016;374:2504–6.
  • Cámara J, Serra J, Ayats J, et al. Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J Antimicrob Chemother 2012;67:1858–60.
  • Golparian D, Ohlsson AK, Janson H, et al. Four treatment failures of pharyngeal gonorrhoea with ceftriaxone (500 mg) or cefotaxime (500 mg), Sweden, 2013 and 2014. Eurosurveillance 2014;19:20862.
  • Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services 2019. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
  • Bolan G, Sparling PF, Wasserheit JN. The emerging threat of untreatable gonococcal infection. N Engl J Med 2012;366:485–7.
  • Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat Microbiol 2019;4:565–77.
  • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004;3:673–83.
  • Chong CR, Sullivan DJ Jr. New uses for old drugs. Nature 2007;448:645–6.
  • Takeuchi H, Supuran C, Onishi S, Nishimori I. The alpha and beta classes carbonic anhydrases from Helicobacter pylori as novel drug targets. Current Pharmaceutical Design 2008;14:622–30.
  • Rahman MM, Tikhomirova A, Modak JK, et al. Antibacterial activity of ethoxzolamide against Helicobacter pylori strains SS1 and 26695. Gut Pathogens 2020;12:20–7.
  • Modak JK, Tikhomirova A, Gorrell RJ, et al. Anti-Helicobacter pylori activity of ethoxzolamide. J Enzyme Inhib Med Chem 2019;34:1660–7.
  • Sanders E, Maren TH. Inhibition of carbonic anhydrase in Neisseria: effects on enzyme activity and growth. Mol Pharmacol 1967;3:204–15.
  • Nafi BM, Miles RJ, Butler LO, et al. Expression of carbonic anhydrase in neisseriae and other heterotrophic bacteria. J Med Microbiol 1990;32:1–7.
  • Johnson BK, Colvin CJ, Needle DB, et al. The carbonic anhydrase inhibitor ethoxzolamide inhibits the Mycobacterium tuberculosis PhoPR regulon and Esx-1 secretion and attenuates virulence. Antimicrobial Agents Chemother 2015;59:4436–45.
  • Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat 2020;30:963–82.
  • Supuran CT. Bacterial carbonic anhydrases as drug targets: toward novel antibiotics? Front Pharmacol 2011;2:34–6.
  • Capasso C, Supuran CT. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: Can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem 2015;30:325–32.
  • Modak JK, Modakh JK, Liu YC, et al. Structural basis for the inhibition of Helicobacter pylori α-carbonic anhydrase by sulfonamides. PLOS ONE 2015;10:e0127149.
  • Modak JK, Liu YC, Supuran CT, Roujeinikova A. Structure-activity relationship for sulfonamide inhibition of Helicobacter pylori α-carbonic anhydrase. J Med Chem 2016;59:11098–109.
  • Mancuso F, De Luca L, Angeli A, et al. In silico-guided identification of new potent inhibitors of carbonic anhydrases expressed in Vibrio cholerae. ACS Med Chem Letters 2020;11:2294–9.
  • Del Prete S, Nocentini A, Supuran CT, Capasso C. Bacterial ι-carbonic anhydrase: a new active class of carbonic anhydrase identified in the genome of the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2020;35:1060–8.
  • Del Prete S, Vullo D, Di P, et al. Sulfonamide inhibition profile of the γ-carbonic anhydrase identified in the genome of the pathogenic bacterium Burkholderia pseudomallei the etiological agent responsible of melioidosis. Bioorganic Med Chem Letters 2017;27:490–5.
  • Burghout P, Cron LE, Gradstedt H, et al. Carbonic anhydrase is essential for Streptococcus pneumoniae growth in environmental ambient air. J Bacteriol 2010;192:4054–62.
  • Supuran CT, Capasso C. An overview of the bacterial carbonic anhydrases. Metabolites 2017;7:56–2139.
  • Capasso C, Supuran CT. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin Ther Targets 2015;19:1689–704.
  • Kaur J, Cao X, Abutaleb NS, et al. Optimization of acetazolamide-based scaffold as potent inhibitors of vancomycin-resistant enterococcus. J Med Chem 2020;63:9540–62.
  • Abutaleb NS, Elkashif A, Flaherty DP, Seleem MN. In vivo antibacterial activity of acetazolamide. Antimicrob Agents Chemother 2021;65:e01715–e01720.
  • Abutaleb NS, Elhassanny AEM, Flaherty DP, Seleem MN. In vitro and in vivo activities of the carbonic anhydrase inhibitor, dorzolamide, against vancomycin-resistant enterococci. PeerJ 2021;9:e11059.
  • Hewitt CS, Abutaleb NS, Elhassanny AEM, et al. Structure-activity relationship studies of acetazolamide-based carbonic anhydrase inhibitors with activity against Neisseria gonorrhoeae. ACS Infect Dis 2021;7:1969–84.
  • Drance SM. Ethoxzolamide (cardrase) in the management of chronic simple glaucoma. Arch Ophthalmol 1960;64:433–7.
  • Maren TH, Brechue WF, Bar-Ilan A. Relations among IOP reduction, ocular disposition and pharmacology of the carbonic anhydrase inhibitor ethoxzolamide. Exp Eye Res 1992;55:73–9.
  • Supuran CT, Altamimi ASA, Carta F. Carbonic anhydrase inhibition and the management of glaucoma: a literature and patent review 2013-2019. Expert Opin Ther Pat 2019;29:781–92.
  • Gordon DM. Ethoxzolamide; a new carbonic anhydrase inhibitor. Am J Ophthalmol 1958;46:41–4.
  • Lim L, Foldvary N, Mascha E, Lee J. Acetazolamide in women with catamenial epilepsy. Epilepsia 2001;42:746–9.
  • Patsalos PN. The epilepsy prescriber’s guide to antiepileptic drugs. Cambridge (UK): Cambridge University Press; 2018.
  • Van Berkel MA, Elefritz JL. Evaluating off-label uses of acetazolamide. Bull Am Soc Hosp Pharm 2018;75:524–31.
  • Ritschel WA, Paulos C, Arancibia A, et al. Pharmacokinetics of acetazolamide in healthy volunteers after short- and long-term exposure to high altitude. J Clin Pharmacol 1998;38:533–9.
  • Low EV, Avery AJ, Gupta V, et al. Identifying the lowest effective dose of acetazolamide for the prophylaxis of acute mountain sickness: systematic review and meta-analysis. BMJ 2012;345:e6779.
  • World Health Organization. WHO Model List of Essential Medicines. Essential medicines and health products. 2017; (August):1–39.
  • Dollery CT, Boobis AR. Therapeutic drugs, 2nd Ed. London (UK): Churchill Livingstone; 1999.
  • Ten Hove MW, Friedman DI, Patel AD, Irrcher I, et al. Safety and tolerability of acetazolamide in the idiopathic intracranial hypertension treatment trial. J Neuro-Ophthalmol 2016;36:13–9.
  • Lubow M, Kuhr L. Pseudotumor cerebri: comments on practical management. Neuro-ophthalmology 1976;9:199–206.
  • Tomsak RL, Niffenegger AS, Remler BF. Treatment of pseudotumor cerebri with Diamox (acetazolamide). J Neuro-Ophthalmol 1988;8:93–8.
  • Hampson AJ, Babalonis S, Lofwall MR, et al. A pharmacokinetic study examining acetazolamide as a novel adherence marker for clinical trials. J Clin Psychopharmacol 2016;36:324–32.
  • Wistrand PJ. The use of carbonic anhydrase inhibitors in ophthalmology and clinical medicine. Annals NY Acad Sci 1984;429:609–19.
  • Wistrand PJ, Rawls JA Jr, Maren TH. Sulphonamide carbonic anhydrase inhibitors and intra-ocular pressure in rabbits. A comparison between in vitro and in vivo activities based on tissue distributions and physical and chemical properties of nine compounds. Acta Pharmacol Toxicol 1961;17:337–55.
  • Wallace SM, Reigelman S. Uptake of acetazolamide by human erythrocytes in vitro. J Pharm Sci 1977;66:729–31.
  • Wallace SM, Shah VP, Riegelman S. GLC analysis of acetazolamide in blood, plasma, and saliva following oral administration to normal subjects. J Pharm Sci 1977;66:527–30.
  • Friedland BR, Maren TH, Carbonic anhydrase: pharmacology of inhibitors and treatment of glaucoma. In: Pharmacology of the Eye. Handbook of experimental pharmacology, vol. 69. Berlin, Heidelberg: Springer; 1984. p. 279–309.
  • Alhashimi M, Mayhoub A, Seleem MN. Repurposing salicylamide for combating multidrug-resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 2019;63:e01225–19.
  • Seong YJ, Alhashimi M, Mayhoub A, et al. Repurposing fenamic acids drugs to combat multidrug-resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 2020;64:e02206–19.
  • Elkashif A, Seleem MN. Investigation of auranofin and gold-containing analogues antibacterial activity against multidrug-resistant Neisseria gonorrhoeae. Sci Rep 2020;10:5602–10.
  • Petreni A, De Luca V, Scaloni A, et al. Anion inhibition studies of the Zn(II)-bound ι-carbonic anhydrase from the gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 2021;36:372–6..
  • Vullo D, Del Prete S, Osman SM, et al. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the oral pathogen Porphyromonas gingivalis. Bioorganic Med Chem Lett 2014;24:240–4.
  • Turkmen H, Durgun M, Yilmaztekin S, et al. Carbonic anhydrase inhibitors. Novel sulfanilamide/acetazolamide derivatives obtained by the tail approach and their interaction with the cytosolic isozymes I and II, and the tumor-associated isozyme IX. Bioorganic Med Chem Lett 2005;15:367–72.
  • Di Cesare Mannelli L, Micheli L, Carta F, et al. Carbonic anhydrase inhibition for the management of cerebral ischemia: in vivo evaluation of sulfonamide and coumarin inhibitors. J Enzyme Inhib Med Chem 2016;31:894–9.
  • Nocentini A, Hewitt CS, Mastrolorenzo MD, et al. Anion inhibition studies of the α-carbonic anhydrases from Neisseria gonorrhoeae. J Enzyme Inhib Med Chem 2021;36:1061–6.
  • Yung-Chi C, Prusoff WH. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 1973;22:3099–108.
  • Hamann HJ, Abutaleb NS, Pal R, et al. β,γ-Diaryl α-methylene-γ-butyrolactones as potent antibacterials against methicillin-resistant Staphylococcus aureus. Bioorganic Chem 2020;104:104183–90.
  • Elsebaei MM, Abutaleb NS, Mahgoub AA, et al. Phenylthiazoles with nitrogenous side chain: an approach to overcome molecular obesity. Eur J Med Chem 2019;182:111593–603.
  • Abutaleb NS, Seleem MN. Repurposing the antiamoebic drug diiodohydroxyquinoline for treatment of Clostridioides difficile infections. Antimicrob Agents Chemother 2020;64:e02115–19.
  • Richter MF, Drown BS, Riley AP, et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 2017;545:299–304.
  • Parker EN, Drown BS, Geddes EJ, et al. Implementation of permeation rules leads to a FabI inhibitor with activity against gram-negative pathogens. Nat Microbiol 2020;5:67–75.
  • Mohammad H, Abutaleb NS, Dieterly AM, et al. Evaluation of ebselen in resolving a methicillin-resistant Staphylococcus aureus infection of pressure ulcers in obese and diabetic mice. PLOS One 2021;16:e0247508.
  • Shahin IG, Abutaleb NS, Alhashimi M, et al. Evaluation of N-phenyl-2-aminothiazoles for treatment of multi-drug resistant and intracellular Staphylococcus aureus infections. Eur J Med Chem 2020;202:112497.
  • Pankuch GA, Jacobs MR, Appelbaum PC. Postantibiotic effects of garenoxacin (BMS-284756) against 12 gram-positive or -negative organisms. Antimicrob Agents Chemother 2003;47:1140–2.
  • Butler MM, Waidyarachchi SL, Connolly KL, et al. Aminomethyl spectinomycins as therapeutics for drug-resistant gonorrhea and chlamydia coinfections. Antimicrob Agents Chemother 2018;62:e00325–18.
  • Naclerio GA, Abutaleb NS, Li D, et al. Ultrapotent inhibitor of clostridioides difficile growth, which suppresses recurrence in vivo. J Med Chem 2020;63:11934–44.
  • Thangamani S, Mohammad H, Abushahba MFN, et al. Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Sci Rep 2016;6:22571.
  • Chirică LC, Elleby B, Jonsson BH, Lindskog S. The complete sequence, expression in Escherichia coli, purification and some properties of carbonic anhydrase from Neisseria gonorrhoeae. Eur J Biochem 1997;244:755–60.
  • Perry TR, Schentag JJ. Clinical use of ceftriaxone. Clin Pharmacokinet 2001;40:685–94.
  • Spivey JM. The postantibiotic effect. Clin Pharm 1992;11:865–75.
  • Cars O, Odenholt-Tornqvist I. The post-antibiotic sub-MIC effect in vitro and in vivo. J Antimicrob Chemother 1993;31:159–66.
  • Mohammad H, Abutaleb NS, Seleem MN. Auranofin rapidly eradicates methicillin-resistant Staphylococcus aureus (MRSA) in an infected pressure ulcer mouse model. Sci Rep 2020;10:7251–8.
  • Binet R, Maurelli AT. Frequency of development and associated physiological cost of azithromycin resistance in Chlamydia psittaci 6BC and C. trachomatis L2. Antimicrob Agents Chemother 2007;51:4267–75.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discovery 2008;7:168–81.
  • Woods DD. The relation of p-aminobenzoic acid to the mechanism of the action of sulphanilamide. Br J Exp Pathol 1940;21:74–90.
  • Davis TD, Gerry CJ, Tan DS. General platform for systematic quantitative evaluation of small-molecule permeability in bacteria. ACS Chem Biol 2014;9:2535–44.
  • Zhao S, Adamiak JW, Bonifay V, et al. Defining new chemical space for drug penetration into gram-negative bacteria. Nat Chem Biol 2020;16:1293–302.
  • Richter MF, Hergenrother PJ. The challenge of converting gram-positive-only compounds into broad-spectrum antibiotics. Annals NY Acad Sci 2019;1435:18–38.
  • O'Shea R, Moser HE. Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem 2008;51:2871–8.
  • Cowan SW, Garavito RM, Jansonius JN, et al. The structure of OmpF porin in a tetragonal crystal form. Structure 1995;3:1041–50.
  • Zeth K, Kozjak-Pavlovic V, Faulstich M, et al. Structure and function of the PorB porin from disseminating Neisseria gonorrhoeae. Biochem J 2013;449:631–42.
  • Danelon C, Suenaga A, Winterhalter M, Yamato I. Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation. Biophys Chem 2003;104:591–603.
  • Acosta-Gutiérrez S, Ferrara L, Pathania M, et al. Getting drugs into gram-negative bacteria: rational rules for permeation through general porins. ACS Infect Dis 2018;4:1487–98.
  • Olesky M, Zhao S, Rosenberg RL, Nicholas RA. Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute, and antibiotic permeation through PIB proteins with penB mutations. J Bacteriol 2006;188:2300–8.
  • Maynard RL. The Merck index: 1996. Occup Environ Med 1997;54:288.
  • Remko M, Von Der Lieth CW. Theoretical study of gas-phase acidity, pKa, lipophilicity, and solubility of some biologically active sulfonamides. Bioorg Med Chem 2004;12:5395–5403.