2,415
Views
2
CrossRef citations to date
0
Altmetric
Brief Reports

Novel 3-chloro-6-nitro-1H-indazole derivatives as promising antileishmanial candidates: synthesis, biological activity, and molecular modelling studies

, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 151-167 | Received 17 Jul 2021, Accepted 12 Oct 2021, Published online: 11 Dec 2021

References

  • Zanger P, Kötter I, Raible A, et al. Case report: successful treatment of cutaneous leishmaniasis caused by Leishmania aethiopica with liposomal amphothericin B in an immunocompromised traveler returning from Eritrea. Am J Trop Med Hyg 2011;84:692–4.
  • Santos DO, Coutinho CER, Madeira MF, et al. Leishmaniasis treatment-a challenge that remains: a review. Parasitol Res 2008;103:1–10.
  • Marinho FA, Gonçalves KCS, Oliveira SS, et al. Miltefosine induces programmed cell death in Leishmania amazonensis promastigotes. Mem Inst Oswaldo Cruz 2011;106:507–9.
  • Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet 2005;366:1561–77.
  • Aoun K, Bouratbine A. Cutaneous leishmaniasis in North Africa: a review. Parasite 2014;21:14.
  • Lukeš J, Mauricio IL, Schönian G, et al. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc Natl Acad Sci USA 2007;104:9375–80.
  • BenSaid M, Guerbouj S, Saghrouni F, et al. Occurrence of Leishmania infantum cutaneous leishmaniasis in central Tunisia. Trans R Soc Trop Med Hyg 2006;100:521–6.
  • Hamann A, Brust D, Osiewacz HD. Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 2008;16:276–83.
  • Trefzger OS, Barbosa NV, Scapolatempo RL, et al. Design, synthesis, antileishmanial, and antifungal biological evaluation of novel 3,5‐disubstituted isoxazole compounds based on 5‐nitrofuran scaffolds. Arch Pharm 2020;352:1900241.
  • Kerru N, Gummidi L, Maddila S, et al. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 2020;25:1909.
  • Agrawal N, Mishra P. The synthetic and therapeutic expedition of isoxazole and its analogs. Med Chem Res 2018;27:1309–44.
  • Wan Y, He S, Li W, Tang Z. Indazole derivatives: promising anti-tumor agents. Anticancer Agents Med Chem 2018;18:1228–34.
  • Kim S-H, Markovitz B, Trovato R, et al. Discovery of a new HIV-1 inhibitor scaffold and synthesis of potential prodrugs of indazoles. Bioorg Med Chem Lett 2013;23:2888–92.
  • Park Y, Pacitto A, Bayliss T, et al. Essential but not vulnerable: indazole sulfonamides targeting inosine monophosphate dehydrogenase as potential leads against Mycobacterium tuberculosis. ACS Infect Dis 2017;3:18–33.
  • Kim H-S, Jadhav JR, Jung S-J, Kwak J-H. Synthesis and antimicrobial activity of imidazole and pyridine appended cholestane-based conjugates. Bioorg Med Chem Lett 2013;23:4315–8.
  • Pfefferkorn JA, Tu M, Filipski KJ, et al. The design and synthesis of indazole and pyrazolopyridine based glucokinase activators for the treatment of type 2 diabetes mellitus. Bioorg Med Chem Lett 2012;22:7100–5.
  • Zhang H-C, Derian CK, Andrade-Gordon P, et al. Discovery and optimization of a novel series of thrombin receptor (PAR-1) antagonists: potent, selective peptide mimetics based on indole and indazole templates. J Med Chem 2001;44:1021–4.
  • Li F, Hu Y, Wang Y, et al. Expeditious lead optimization of isoxazole-containing influenza A virus M2-S31N inhibitors using the Suzuki-Miyaura cross-coupling reaction. J Med Chem 2017;60:1580–90.
  • Swapnaja KJM, Yennam S, Chavali M, et al. Design, synthesis and biological evaluation of diaziridinyl quinone isoxazole hybrids. Eur J Med Chem 2016;117:85–98.
  • Zhu J, Mo J, Lin H, et al. The recent progress of isoxazole in medicinal chemistry. Bioorg Med Chem 2018;26:3065–75.
  • Pedada SR, Yarla NS, Tambade PJ, et al. Synthesis of new secretory phospholipase A2-inhibitory indole containing isoxazole derivatives as anti-inflammatory and anticancer agents. Eur J Med Chem 2016;112:289–97.
  • Da Rosa R, de Moraes MH, Zimmermann LA, et al. Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis. Eur J Med Chem 2017;128:25–35.
  • Najafi Z, Mahdavi M, Saeedi M, et al. Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer's compounds: in vitro and in vivo biological evaluation and docking study. Bioorg Chem 2019;83:303–16.
  • Rastegari A, Nadri H, Mahdavi M, et al. Design, synthesis and anti-Alzheimer's activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg Chem 2019;83:391–401.
  • Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019;183:111700.
  • Lal K, Yadav P. Recent advancements in 1,4-disubstituted 1H-1,2,3-triazoles as potential anticancer agents. Anticancer Agents Med Chem 2018;18:21–37.
  • Chu XM, Wang C, Wang WL, et al. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur J Med Chem 2019;166:206–23.
  • Asif M. A mini review on antimalarial activities of biologically active substituted triazoles derivatives. Int J Adv Res Chem Sci 2014;1:22–8.
  • Zhang S, Xu Z, Gao C, et al. Triazole derivatives and their anti-tubercular activity. Eur J Med Chem 2017;138:501–13.
  • Keri RS, Patil SA, Budagumpi S, Nagaraja BM. Triazole: a promising antitubercular agent. Chem Biol Drug Des 2015;86:410–23.
  • Dheer D, Singh V, Shankar R. Medicinal attributes of 1,2,3-triazoles: current developments. Bioorg Chem 2017;71:30–54.
  • Asif M. Pharmacological activities of triazole analogues as antibacterial, antifungal, antiviral agents. Pharm Sci Asia 2017;44:59–74.
  • Zhang B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur J Med Chem 2019;168:357–72.
  • Minkin VI, Garnovskii DG, Elguero J, et al. The tautomerism of heterocycles: five-membered rings with two or more heteroatoms. Adv Heterocycl Chem 2000;76:157–323.
  • Baiocco P, Colotti G, Franceschini S, Ilari A. Molecular basis of antimony treatment in Leishmaniasis. J Med Chem 2009;52:2603–12.
  • Spinks D, Torrie LS, Thompson S, et al. Design, synthesis and biological evaluation of Trypanosoma brucei trypanothione synthetase inhibitors. ChemMedChem 2012;7:95–106.
  • Scarim CB, Jornada DH, Chelucci RC, et al. Current advances in drug discovery for Chagas disease. Eur J Med Chem 2018;155:824–38.
  • Fonseca-Berzal C, Ibáñez-Escribano A, Reviriego F, et al. Antichagasic and trichomonacidal activity of 1-substituted 2-benzyl-5-nitroindazolin-3-ones and 3-alkoxy-2-benzyl-5-nitro-2H-indazoles. Eur J Med Chem 2016;115:295–310.
  • Hassan J, Naz S, Haider A, et al. h-BN nanosheets doped with transition metals for environmental remediation; a DFT approach and molecular docking analysis. Mater Sci Eng: B 2021;272:115365.
  • Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785–91.
  • Abuelizz HA, Dib RE, Marzouk M, et al. Molecular docking and anticonvulsant activity of newly synthesized quinazoline derivatives. Molecules 2017;22:1094–103.
  • Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993;98:5648–52.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 1988;37:785–9.
  • Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 2005;7:3297–305.
  • Frisch MJ, Trucks GW, Schlegel HB, et al., Gaussian 09, Revision E.01. Wallingford, CT: Gaussian, Inc.; 2013.
  • Bandiera T, Albini FM, Albini E. Synthesis and antifungal activity of some allylamine derivatives. J Heterocycl Chem 1987;24:1597–8.
  • Ahabchane NH, Keïta A, Essassi EM. Synthèse des 1-pyrazolyl, isoxazolyl et 1,2,3-triazolylméthyl-1,5-benzodiazépines par cycloaddition dipolaire-1,3. Comptes Rendus Acad Sci Ser IIC Chem 1999;2:519–23.
  • Mohammadi-Khanaposhtani M, Saeedi M, Zafarghandi NS, et al. Potent acetylcholinesterase inhibitors: design, synthesis, biological evaluation, and docking study of acridone linked to 1,2,3-triazole derivatives. Eur J Med Chem 2015;92:799–806.
  • Wang Q, Chan TR, Hilgraf R, et al. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc 2003;125:3192–3.
  • Bock VD, Hiemstra H, Van Maarseveen JH. CuI-catalyzed alkyne-azide click cycloadditions from a mechanistic and synthetic perspective. Eur J Org Chem 2005;1:51–68.
  • Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 2002;67:3057–64.
  • Himo F, Lovell T, Hilgraf R, et al. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 2005;127:210–6.
  • Dardouri R, Rodi YK, Haoudi A, et al. Synthèse et modélisation de nouveaux systèmes hétérocycliques obtenus par cycloaddition 1,3-dipolaire dérivant de la 1,5-benzodiazépine-2,4-dione. J Mar Chim Heterocycl 2012;11:52–60.
  • Alaoui IC, Rodi YK, Keita A, et al. Synthesis of new heterocyclic systems by 1,3-dipolar cycloaddition from the 1,5-benzodiazepine-2,4-dione. Phys Chem News 2008;39:98–103.
  • Brik A, Alexandratos J, Lin Y-C, et al. 1,2,3-triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. ChemBioChem 2005;6:1167–9.
  • Karthikeyan S, Bharanidharan G, Ragavan S, et al. Comparative binding analysis of N-acetylneuraminic acid in bovine serum albumin and human α-1 acid glycoprotein. J Chem Inf Model 2019;59:326–38.
  • Akram T, Abbas MA, Mahmood A, et al. Synthesis, molecular structure, spectroscopic properties and biological evaluation of 4-substituted-N-(1H-tetrazol-5-yl)benzenesulfonamides: combined experimental, DFT and docking study. J Mol Struct 2019;1195:119–30.
  • Djafri A, Perveen F, Benhalima N, et al. Experimental spectral characterization, Hirshfeld surface analysis, DFT/TD-DFT calculations and docking studies of (2Z,5Z)-5-(4-nitrobenzylidene)-3-N(2-methoxyphenyl)-2-N′(2-methoxyphenylimino) thiazolidin-4-one. Heliyon 2020;6:e05754
  • Karthikeyan S, Bharanidharan G, Ragavan S, et al. Exploring the binding interaction mechanism of taxol in β-tubulin and bovine serum albumin: a biophysical approach. Mol Pharm 2019;16:669–81.
  • Karthikeyan S, Bharanidharan G, Karthik AM, et al. Determination on the binding of thiadiazole derivative to human serum albumin: a spectroscopy and computational approach. J Biomol Struct Dyn 2017;35:817–28.
  • Karthikeyan S, Bharanidharan G, Manish K, et al. Insights into the binding of thiosemicarbazone derivatives with human serum albumin: spectroscopy and molecular modelling studies. J Biomol Struct Dyn 2016;34:1264–81.
  • do Nascimento JP, Santos LS, Santos RHA, et al. Synthesis, X-ray crystal structure and theoretical calculations of antileishmanial neolignan analogues. J Braz Chem Soc 2010;21:1825–37.
  • Pinheiro LCS, Borges JC, dos Santos MS, et al. Searching for new antileishmanial lead drug candidates: synthesis, biological and theoretical evaluations of promising thieno[2,3-b]pyridine derivatives. J Microbiol Antimicrob 2012;40:32–9.
  • Howe RK, Schleppnik FM. Nitrile oxide cycloaddition routes to 2-(isoxazolyl)-benzoates and 2-(1,2,4-oxadiazol-3-yl)benzoates. J Heterocycl Chem 1982;19:721–6.