1,857
Views
0
CrossRef citations to date
0
Altmetric
Research Papers

Ultrasound promoted green synthesis, anticancer evaluation, and molecular docking studies of hydrazines: a pilot trial

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 135-144 | Received 13 May 2021, Accepted 10 Oct 2021, Published online: 11 Dec 2021

References

  • Pandeya SN. Semicarbazone a versatile therapeutic pharmacophores for fragment based anticonvulsant drug design. Acta Pharm 2012;62:263–86.
  • Ahsan MJ. Semicarbazone analogs as anticonvulsant agents: a review. Cent Nerv Syst Agents Med Chem 2013;13:148–58.
  • Ali SMM, Azad MAK, Jesmin M, et al. In vivo anticancer activity of vanillin semicarbazone. Asian Pac J Trop Biomed 2012;2:438–42.
  • Liu Z, Wu S, Wang Y, et al. Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine derivatives possessing diaryl semicarbazone scaffolds as potent antitumor agents. Eur J Med Chem 2014;87:782–93.
  • da Cruz ACN, Brondani DJ, de Santana TI, et al. Biological evaluation of arylsemicarbazone derivatives as potential anticancer agents. Pharmaceuticals 2019;12:169.
  • Zhai X, Bao G, Wang L, et al. Design, synthesis and biological evaluation of novel 4-phenoxy-6,7-disubstituted quinolines possessing (thio)semicarbazones as c-Met kinase inhibitors. Bioorg Med Chem 2016;24:1331–45.
  • Ahsan MJ, Khalilullah H, Yasmin S, et al. Synthesis and anticonvulsant evaluation of 2-(substituted benzylidene/ethylidene)-N-(substituted phenyl)hydrazinecarboxamide analogues. Med Chem Res 2013;22:2746–54.
  • Yogeeswari P, Sriram D, Thirumurugan R, et al. Discovery of N-(2,6-dimethylphenyl)-substituted semicarbazones as anticonvulsants: hybrid pharmacophore-based design. J Med Chem 2005;48:6202–11.
  • Yogeeswari P, Sriram D, Thirumurugan R, et al. Synthesis of N4-(2,4-dimethylphenyl) semicarbazones as 4-aminobutyrate aminotransferase inhibitors. Acta Pharm 2006;56:259–72.
  • Ahsan MJ, Amir M, Bakht MA, et al. Synthesis and antimicrobial activity of N1-(3-Chloro-4-flourophenyl)-N4-substituted semicarbazone derivatives. Arabian J Chem 2016;9:S861–S866.
  • Dimmock JR, Pandeya SN, Quail JW, et al. Evaluation of the semicarbazones, thoisemicarbazones and bis-carbohydrazones of some aryl alicyclic ketones from anticonvulsant and other biological properties. Eur J Med Chem 1995;30:303–14.
  • Mishra V, Pandeya SN, Declercq E, et al. Syntheis of aryl semicarbazone of 4-aminoacetophenone and their anti-HIV activity. Pharmaceut Acta Helvet 1998;73:215–8.
  • Taroua M, Ribuot C, Pera MH, et al. New α, β and γ semicarbazone and thiosemicarbazone 1,3-ditholanes as radioprotectors. anticonvulsant activity. Eur J Med Chem 1996;31:589–95.
  • Sriram D, Yogeeswari P, Thirumurugan R. Antituberculous activity of some aryl semicarbazone derivatives. Bioorg Med Chem Lett 2004;14:3923–4.
  • Cerecetto H, Maio RD, Gonzalez M, et al. Synthesis and antitrypanosomal evaluation of E-Isomers of 5-Nitro-2-Furaldehyde and 5-nitrothiophene-2-carboxaldehyde semicarbazone derivatives. structure-activity relationships. Eur J Med Chem 2000;35:343–50.
  • Cerecetto H, Maio RD, Ibarruri G, et al. Synthesis and anti-trypanosomal activity of novel 5-nitro-2-furaldehyde and 5-nitrothiophene-2-carboxaldehyde semicarbazone derivatives. Il Farmaco 1998;53:89–94.
  • Amir M, Ahsan MJ, Ali I. Synthesis of N1-(3-chloro-4-flourophenyl)-N4-substituted semicarbazones as novel anticonvulsant agents. Indian J Chem 2010;49B:1509–14.
  • Alarcon-Rojo AD, Carrillo-Lopez L, Reyes-Villagrana MR, et al. Ultrasound and meat quality: a review. Ultrason Sonochem 2020;55: 369–82.
  • Chemat F, Ashokkumar M. Preface: ultrasound in the processing of liquid foods, beverages and alcoholic drinks. Ultrason Sonochem 2017;38:753.
  • F, Chemat Zill-E-Huma MK. Khan Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 2011;18:813–35.
  • Awad TS, Moharram HA, Shaltout OE, et al. Applications of ultrasound in analysis, processing and quality control of food: a review. Food Res Int 2012;48:410–27.
  • Bakht MA, Geesi MH, Riadi Y, et al. Ultrasound-assisted extraction of some branded tea: optimization based on polyphenol content, antioxidant potential and thermodynamic study. Saudi J Biol Sci 2019;26:1043–52.
  • Geesi MH, Moustapha ME, Bakht MA, Riadi Y. Ultrasound-accelerated green synthesis of new quinolin-2-thione derivatives and antimicrobial evaluation against Escherichia coli and Staphylococcus aureus. Sustainable Chem Pharm 2020;15:100195.
  • Wang SY, Ji SJ, Su XM. A meldrum's acid catalyzed synthesis of bis(indolyl)methanes in water under ultrasonic condition. Chin J Chem 2008;26:22–4.
  • Li JT, Li XL, Li TS. Synthesis of oximes under ultrasound irradiation. Ultrason Sonochem 2006;13:200–2.
  • Zang H, Zhang Y, Zang Y, Cheng BW. An efficient ultrasound-promoted method for the one-pot synthesis of 7,10,11,12-tetrahydrobenzo[c]acridin-8(9H)-one derivatives. Ultrason Sonochem 2010;17:495–9.
  • Jarag KJ, Pinjari DV, Pandit AB, Shankarling GS. Synthesis of chalcone (3-(4-fluorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one): advantage of sonochemical method over conventional method. Ultrason Sonochem 2011;18:617–23.
  • Bakht MA, Ansari MJ, Riadi Y, et al. Benzalkonium chloride and urea based deep eutectic solvent (DES): a novel catalyst for the efficient synthesis of isoxazolines under ultrasonic irradiation. J Mol Liq 2016;224:1249–55.
  • Mason TJ. Sonochemistry and the environment - providing a "green" link between chemistry, physics and engineering. Ultrason Sonochem 2007;14:476–83.
  • Gao DM, Ma WL, Li TR, et al. An improved synthesis of 1,2-diarylethanols under conventional heating and ultrasound irradiation. Molecules 2012;17:10708–15.
  • Yadav JS, Reddy BVS, Reddy KS. Ultrasound-accelerated synthesis of chiral allylic alcohols promoted by indium metal. Tetrahedron 2003;59:5333–6.
  • Liu T, Baek DR, Kim JS, et al. Green synthesis of silver nanoparticles with size distribution depending on reducing species in glycerol at ambient pH and temperatures. ACS Omega 2020;5:16246–54.
  • Díaz-Álvarez AE, Francos J, Lastra-Barreira B, et al. Glycerol and derived solvents: new sustainable reaction media for organic synthesis. Chem Commun 2011;47:6208–27.
  • Quispe CAG, Coronado CJR, Carvalho JA Jr. Glycerol: production, consumption, prices, characterization and new trends in combustion. Renewable Sustainable Energy Rev 2013;27:475–93.
  • WHO cancer reports. 2020; ISBN 978-92-4-000129-9.
  • Mohamady S, Galal M, Eldehna WM, et al. Dual targeting of VEGFR2 and C-met kinases via the design and synthesis of substituted 3-(Triazolo-thiadiazin-3-yl)indolin-2-one derivatives as angiogenesis inhibitors. ACS Omega 2020;5:18872–86.
  • Sogabe S, Kawakita Y, Igaki S, et al. Structure-based approach for the discovery of Pyrrolo[3,2-d]pyrimidine-based EGFR T790M/L858R mutant inhibitors. ACS Med Chem Lett 2013;4:201–5.
  • Ahsan MJ, Hassan MZ, Jadav SS, et al. Synthesis and biological potentials of 5-aryl-N-[4-(trifluoromethyl) phenyl]-1,3,4-oxadiazol-2-amines. Lett Org Chem 2020;17:133–40.
  • Merla A, Goel S. Novel drugs targeting the epidermal growth factor receptor and its downstream pathways in the treatment of colorectal cancer: a systematic review. Chemother Res Pract 2012;2012:387172.
  • Xu MJ, Johnson DE, Grandis JR. EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev 2017;36:463–73.
  • Blair JA, Rauh D, Kung C, et al. Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nat Chem Biol 2007;3:229–38.
  • Nath R, Pathania S, Grover G, Akhtar MJ. Isatin containing heterocycles for different biological activities: analysis of structure activity relationship. J Mol Str 2020;1222:128900.
  • DTP Developmental therapeutic Programs: http://dtp.nci.nih.gov
  • Monks A, Scudiero D, Skehan P, et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 1991;83:757–66.
  • Boyd MR, Paull KD. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev Res 1995;34:91–109.
  • Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006;6:813–23.
  • EGFR Kinase domain T790M/L858R mutant: https://www.rcsb.org/structure/3W2R
  • Canter D, Kutikov A, Golovine K, et al. Are all multi-targeted tyrosine kinase inhibitors created equal? An in vitro study of sunitinib and pazopanib in renal cell carcinoma cell lines. Can J Urol 2011;18:5819–25.
  • Toxicity prediction software. Available at: https://tox-new.charite.de/protox_II/index.php?site=home
  • Banerjee P, Eckert AO, Schrey A, Preissner KR. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 2018;46:W257–W263.
  • Raies AB, Bajic VB. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci 2016;6:147–72.