1,719
Views
2
CrossRef citations to date
0
Altmetric
Research Papers

New 1,2,4-oxadiazole derivatives with positive mGlu4 receptor modulation activity and antipsychotic-like properties

, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 211-225 | Received 06 May 2021, Accepted 18 Oct 2021, Published online: 11 Dec 2021

References

  • Flor PJ, Acher FC. Orthosteric versus allosteric GPCR activation: the great challenge of group-III mGluRs. Biochem Pharmacol 2012;84:414–24.
  • Lindsley CW, Emmitte KA, Hopkins CR, et al. Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors. Chem Rev 2016;116:6707–41.
  • Feng Z, Ma S, Hu G, et al. Allosteric binding site and activation mechanism of class C G-protein coupled receptors: metabotropic glutamate receptor family. Aaps J 2015;17:737–53.
  • Gregory KJ, Noetzel MJ, Niswender CM. Pharmacology of metabotropic glutamate receptor allosteric modulators: structural basis and therapeutic potential for CNS disorders. Prog Mol Biol Transl Sci 2013;115:61–121.
  • Gregory KJ, Dong EN, Meiler J, et al. Allosteric modulation of metabotropic glutamate receptors: structural insights and therapeutic potential. Neuropharmacology 2011;60:66–81.
  • Conn PJ, Christopoulos A, Lindsley CW. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 2009;8:41–54.
  • Charvin D, Pomel V, Ortiz M, et al. Discovery, structure-activity relationship, and antiparkinsonian effect of a potent and brain-penetrant chemical series of positive allosteric modulators of metabotropic glutamate receptor 4. J Med Chem 2017;60:8515–37.
  • Golubeva AV, Moloney RD, O'Connor RM, et al. Metabotropic glutamate receptors in central nervous system diseases. Curr Drug Targets 2016;17:538–616.
  • Jones CK, Engers DW, Thompson AD, et al. Discovery, synthesis, and structure-activity relationship development of a series of N-4-(2,5-dioxopyrrolidin-1-yl)phenylpicolinamides (VU0400195, ML182): characterization of a novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu(4)) with oral efficacy in an antiparkinsonian animal model. J Med Chem 2011;54:7639–47.
  • Bahi A, Fizia K, Dietz M, et al. Pharmacological modulation of mGluR7 with AMN082 and MMPIP exerts specific influences on alcohol consumption and preference in rats. Addict Biol 2012;17:235–47.
  • Gasparini F, Kuhn R, Pin JP. Allosteric modulators of group I metabotropic glutamate receptors: novel subtype-selective ligands and therapeutic perspectives. Curr Opin Pharmacol 2002;2:43–9.
  • Knoflach F, Mutel V, Jolidon S, et al. Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc Natl Acad Sci USA 2001;98:13402–7.
  • Schlumberger C, Pietraszek M, Gravius A, et al. Comparison of the mGlu(5) receptor positive allosteric modulator ADX47273 and the mGlu(2/3) receptor agonist LY354740 in tests for antipsychotic-like activity. Eur J Pharmacol 2009;623:73–83.
  • Rodriguez AL, Grier MD, Jones CK, et al. Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity. Mol Pharmacol 2010;78:1105–23.
  • Bolea C, Addex Pharma SA, Amido derivatives and their use as positive allosteric modulators of metabotropic glutamate receptors, WO 2009/010454 A2; 2009.
  • Bolea C, Celanire S, Addex Pharma SA, Heterotricyclic compounds as positive allosteric modulators of metabotropic glutamate receptors, WO 2010/079238 A1; 2010.
  • Liverton N, Bolea C, Celanire S, et al., Merck Sharp & Dohme Corp, Addex Pharma SA, Tricyclic compounds as allosteric modulators of metabotropic glutamate receptors, WO 2012/006760 A1; 2012.
  • Celanire S, Campo B. Recent advances in the drug discovery of metabotropic glutamate receptor 4 (mGluR4) activators for the treatment of CNS and non-CNS disorders. Expert Opin Drug Discov 2012;7:261–80.
  • Mccauley JA, Butcher JW, Hess JW, et al. Merck & Co., Inc., Sulfonamide derivative metabotropic glutamate R4 ligands, WO 2010/033350 A1; 2010.
  • Marino MJ, Williams DL Jr., O'Brien JA, et al. Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson's disease treatment. Proc Natl Acad Sci USA 2003;100:13668–73.
  • Bennouar KE, Uberti MA, Melon C, et al. Synergy between L-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson's disease treatment and dyskinesia. Neuropharmacology 2013;66:158–69.
  • Hong SP, Liu KG, Ma G, et al. Tricyclic thiazolopyrazole derivatives as metabotropic glutamate receptor 4 positive allosteric modulators. J Med Chem 2011;54:5070–81.
  • Robichaud AJ, Engers DW, Lindsley CW, et al. Recent progress on the identification of metabotropic glutamate 4 receptor ligands and their potential utility as CNS therapeutics. ACS Chem Neurosci 2011;2:433–49.
  • Jimenez HN, Liu KG, Hong SP, et al. 4-(1-Phenyl-1H-pyrazol-4-yl)quinolines as novel, selective and brain penetrant metabotropic glutamate receptor 4 positive allosteric modulators. Bioorg Med Chem Lett 2012;22:3235–9.
  • Charvin D, Di Paolo T, Bezard E, et al. An mGlu4-positive allosteric modulator alleviates Parkinsonism in primates. Mov Disord 2018;33:1619–31.
  • Schann S, Mayer S, Morice C, et al., Domain Therapeutics, Prestwick Chemical, Inc., Novel oxime derivatives and their use as allosteric modulators of metabotropic glutamate receptors, WO 2011/051478 A1; 2011.
  • Biemans B, Jaeschke G, Ricci A, et al., Hoffmann-La Roche Inc., Ethynyl derivatives, WO 2018/015235 A1; 2018.
  • East SP, Bamford S, Dietz MG, et al. An orally bioavailable positive allosteric modulator of the mGlu4 receptor with efficacy in an animal model of motor dysfunction. Bioorg Med Chem Lett 2010;20:4901–5.
  • East SP, Gerlach K. mGluR4 positive allosteric modulators with potential for the treatment of Parkinson's disease: WO09010455. Expert Opin Ther Pat 2010;20:441–5.
  • Reed CW, McGowan KM, Spearing PK, et al. VU6010608, a Novel mGlu7 NAM from a Series of N-(2-(1H-1,2,4-Triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamides. ACS Med Chem Lett 2017;8:1326–30.
  • Engers DW, Blobaum AL, Gogliotti RD, et al. Discovery, synthesis, and preclinical characterization of N-(3-chloro-4-fluorophenyl)-1H-pyrazolo[4,3-b]pyridin-3-amine (VU0418506), a novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu4). ACS Chem Neurosci 2016;7:1192–200.
  • Jalan-Sakrikar N, Field JR, Klar R, et al. Identification of positive allosteric modulators VU0155094 (ML397) and VU0422288 (ML396) reveals new insights into the biology of metabotropic glutamate receptor 7. ACS Chem Neurosci 2014;5:1221–37.
  • Bollinger SR, Engers DW, Panarese JD, et al. Discovery, structure-activity relationship, and biological characterization of a novel series of 6-((1 H-pyrazolo[4,3- b]pyridin-3-yl)amino)-benzo[d]isothiazole-3-carboxamides as positive allosteric modulators of the metabotropic glutamate receptor 4 (mGlu4). J Med Chem 2019;62:342–58.
  • Lindsley CW, Hopkins CR. Metabotropic glutamate receptor 4 (mGlu4)-positive allosteric modulators for the treatment of Parkinson's disease: historical perspective and review of the patent literature. Expert Opin Ther Pat 2012;22:461–81.
  • Panarese JD, Engers DW, Wu YJ, et al. The discovery of VU0652957 (VU2957, Valiglurax): SAR and DMPK challenges en route to an mGlu4 PAM development candidate. Bioorg Med Chem Lett 2019;29:342–6.
  • Conn PJ, Lindsley CW, Felts AS, et al., Vanderbilt University, Indazole compounds as mGluR4 allosteric potentiators, compositions, and methods of treating neurological dysfunction, WO 2019/036534 A1; 2019.
  • Mathiesen JM, Svendsen N, Brauner-Osborne H, et al. Positive allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and MPEP. Br J Pharmacol 2003;138:1026–30.
  • Rovira X, Malhaire F, Scholler P, et al. Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors. Faseb J 2015;29:116–30.
  • Williams R, Johnson KA, Gentry PR, et al. Synthesis and SAR of a novel positive allosteric modulator (PAM) of the metabotropic glutamate receptor 4 (mGluR4). Bioorg Med Chem Lett 2009;19:4967–70.
  • Battaglia G, Busceti CL, Molinaro G, et al. Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci 2006;26:7222–9.
  • Litim N, Morissette M, Di Paolo T. Metabotropic glutamate receptors as therapeutic targets in Parkinson's disease: An update from the last 5 years of research. Neuropharmacology 2017;115:166–79.
  • Maj M, Bruno V, Dragic Z, et al. (-)-PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection. Neuropharmacology 2003;45:895–906.
  • Dickerson JW, Conn PJ. Therapeutic potential of targeting metabotropic glutamate receptors for Parkinson's disease. Neurodegener Dis Manag 2012;2:221–32.
  • Annoura H, Fukunaga A, Uesugi M, et al. A novel class of antagonists for metabotropic glutamate receptors, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylates. Bioorg Med Chem Lett 1996;6:763–6.
  • Hovelso N, Sotty F, Montezinho LP, et al. Therapeutic potential of metabotropic glutamate receptor modulators. Curr Neuropharmacol 2012;10:12–48.
  • Klak K, Palucha A, Branski P, et al. Combined administration of PHCCC, a positive allosteric modulator of mGlu4 receptors and ACPT-I, mGlu III receptor agonist evokes antidepressant-like effects in rats. Amino Acids 2007;32:169–72.
  • Stachowicz K, Chojnacka-Wojcik E, Klak K, et al. Anxiolytic-like effects of group III mGlu receptor ligands in the hippocampus involve GABAA signaling. Pharmacol Rep 2006;58:820–6.
  • Sławińska A, Wierońska JM, Stachowicz K, et al. Anxiolytic- but not antidepressant-like activity of Lu AF21934, a novel, selective positive allosteric modulator of the mGlu4 receptor. Neuropharmacology 2013;66:225–35.
  • Teall M, White K, Mack S, et al., mGluR7 agonist compounds for treating mGluR7- regulated diseases, disorders, or conditions, WO 2018/092921 A1; 2018.
  • Ngomba RT, Ferraguti F, Badura A, et al. Positive allosteric modulation of metabotropic glutamate 4 (mGlu4) receptors enhances spontaneous and evoked absence seizures. Neuropharmacology 2008;54:344–54.
  • Canudas AM, Di Giorgi-Gerevini V, Iacovelli L, et al. PHCCC, a specific enhancer of type 4 metabotropic glutamate receptors, reduces proliferation and promotes differentiation of cerebellar granule cell neuroprecursors. J Neurosci 2004;24:10343–52.
  • Shin SS, Martino JJ, Chen S. Metabotropic glutamate receptors (mGlus) and cellular transformation. Neuropharmacology 2008;55:396–402.
  • Williams R, Niswender CM, Luo Q, et al. Positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4). Part II: challenges in hit-to-lead. Bioorg Med Chem Lett 2009;19:962–6.
  • Niswender CM, Johnson KA, Weaver CD, et al. Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol Pharmacol 2008;74:1345–58.
  • Williams R, Zhou Y, Niswender CM, et al. Re-exploration of the PHCCC scaffold: discovery of improved positive allosteric modulators of mGluR4. ACS Chem Neurosci 2010;1:411–9.
  • Niswender CM, Lebois EP, Luo Q, et al. Positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4): Part I. Discovery of pyrazolo[3,4-d]pyrimidines as novel mGluR4 positive allosteric modulators. Bioorg Med Chem Lett 2008;18:5626–30.
  • Engers DW, Gentry PR, Williams R, et al. Synthesis and SAR of novel, 4-(phenylsulfamoyl)phenylacetamide mGlu4 positive allosteric modulators (PAMs) identified by functional high-throughput screening (HTS). Bioorg Med Chem Lett 2010;20:5175–8.
  • Engers DW, Niswender CM, Weaver CD, et al. Synthesis and evaluation of a series of heterobiarylamides that are centrally penetrant metabotropic glutamate receptor 4 (mGluR4) positive allosteric modulators (PAMs). J Med Chem 2009;52:4115–8.
  • Conn PJ, Lindsley CW, Hopkins CR, et al., Vanderbilt University, Substituted benzoimidazolesulfonamides and substituted indolesulfonamides as mGluR4 potentiators, WO 2011/011722 A1; 2011.
  • McCauley JA, Hess JW, Liverton NJ, et al., Merck & Co. Inc., Phthalimide derivative metabotropic glutamate R4 ligands, WO 2010/033349 A1; 2010.
  • Kalinichev M, Rouillier M, Girard F, et al. ADX71743, a potent and selective negative allosteric modulator of metabotropic glutamate receptor 7: in vitro and in vivo characterization. J Pharmacol Exp Ther 2013;344:624–36.
  • Kalinichev M, Le Poul E, Bolea C, et al. Characterization of the novel positive allosteric modulator of the metabotropic glutamate receptor 4 ADX88178 in rodent models of neuropsychiatric disorders. J Pharmacol Exp Ther 2014;350:495–505.
  • Cheung YY, Zamorano R, Blobaum AL, et al. Solution-phase parallel synthesis and SAR of homopiperazinyl analogs as positive allosteric modulators of mGlu4). ACS Comb Sci 2011;13:159–65.
  • Conn PJ, Lindsley CW, Hopkins CR, et al., Vanderbilt University, Benzisoxazoles and azabenzisoxazoles as mGluR4 allosteric potentiators, compositions, and methods of treating neurological dysfunction, WO 2011/100614 A1; 2011.
  • Conn PJ, lindsley CW, Hopkins CR, et al., Vanderbilt University, mGluR4 allosteric potentiators, compositions, and methods of treating neurological dysfunction, WO 2011/029104 A1; 2011.
  • Bolea C, Celanire S, Addex Pharma SA, Novel heteroaromatic derivatives and their use as positive allosteric modulators of metabotropic glutamate receptors, WO 2009/010455 A2; 2009.
  • Biemans B, Guba W, Jaeschke G, et al., F. Hoffmann-La Roche AG, 3-(4-Ethynylphenyl)hexahydropyrimidin-2,4-dione derivatives as modulators of mGluR4. WO 2016/146600 A1. 2016.
  • Biernacki K, Daśko M, Ciupak O, et al. Novel 1,2,4-oxadiazole derivatives in drug discovery. Pharmaceuticals 2020;13:111.
  • Engers DW, Field JR, Le U, et al. Discovery, synthesis, and structure-activity relationship development of a series of N-(4-acetamido)phenylpicolinamides as positive allosteric modulators of metabotropic glutamate receptor 4 (mGlu(4)) with CNS exposure in rats. J Med Chem 2011;54:1106–10.
  • Palucha A, Pilc A. Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. Pharmacol Ther 2007;115:116–47.
  • Stachowicz K, Kłodzińska A, Palucha-Poniewiera A, et al. The group III mGlu receptor agonist ACPT-I exerts anxiolytic-like but not antidepressant-like effects, mediated by the serotonergic and GABA-ergic systems. Neuropharmacology 2009;57:227–34.
  • Pałucha-Poniewiera A, Kłodzińska A, Stachowicz K, et al. Peripheral administration of group III mGlu receptor agonist ACPT-I exerts potential antipsychotic effects in rodents. Neuropharmacology 2008;55:517–24.
  • Palucha A, Tatarczynska E, Branski P, et al. Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats. Neuropharmacology 2004;46:151–9.
  • Palucha A, Klak K, Branski P, et al. Activation of the mGlu7 receptor elicits antidepressant-like effects in mice. Psychopharmacology (Berl) 2007;194:555–62.
  • Cieślik P, Woźniak M, Kaczorowska K, et al. Negative allosteric modulators of mGlu7 receptor as putative antipsychotic drugs. Front Mol Neurosci 2018;11:316.
  • Olivier B, Zethof T, Pattij T, et al. Stress-induced hyperthermia and anxiety: pharmacological validation. Eur J Pharmacol 2003;463:117–32.
  • Sławińska A, Wierońska JM, Stachowicz K, et al. The antipsychotic-like effects of positive allosteric modulators of metabotropic glutamate mGlu4 receptors in rodents. Br J Pharmacol 2013;169:1824–39.
  • Wierońska JM, Zorn SH, Doller D, et al. Metabotropic glutamate receptors as targets for new antipsychotic drugs: Historical perspective and critical comparative assessment. Pharmacol Ther 2016;157:10–27.
  • Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 2012;37:4–15.
  • Wieronska JM, Slawinska A, Lason-Tyburkiewicz M, et al. The antipsychotic-like effects in rodents of the positive allosteric modulator Lu AF21934 involve 5-HT1A receptor signaling: mechanistic studies. Psychopharmacology (Berl) 2015;232:259–73.
  • Wierońska JM, Acher FC, Sławińska A, et al. The antipsychotic-like effects of the mGlu group III orthosteric agonist, LSP1-2111, involves 5-HTıA signalling. Psychopharmacology 2013;227:711–25.
  • Fukuyama K, Kato R, Murata M, et al. Clozapine normalizes a glutamatergic transmission abnormality induced by an impaired NMDA Receptor in the thalamocortical pathway via the activation of a group III metabotropic glutamate receptor. Biomolecules 2019;9:234.
  • Harpsøe K, Isberg V, Tehan BG, et al. Selective negative allosteric modulation of metabotropic glutamate receptors – a structural perspective of ligands and mutants. Sci Rep 2015;5:13869.
  • Bedford CD, Howd RA, Dailey OD, et al. Nonquaternary cholinesterase reactivators. 3. 3(5)-Substituted 1,2,4-oxadiazol-5(3)-aldoximes and 1,2,4-oxadiazole-5(3)-thiocarbohydroximates as reactivators of organophosphonate-inhibited eel and human acetylcholinesterase in vitro. J Med Chem 1986;29:2174–83.
  • Xia G, You X, Liu L, et al. Design, synthesis and SAR of piperidyl-oxadiazoles as 11β-hydroxysteroid dehydrogenase 1 inhibitors . Eur J Med Chem 2013;62:1–10.
  • Nowrouzi N, Khalili D, Irajzadeh M. One-pot synthesis of 1,2,4-oxadiazoles from carboxylic acids using 4-(dimethylamino)pyridinium acetate as efficient, regenerable, and green catalyst with ionic liquid character. Journal of the Iranian Chemical Society 2015;12:801–6.
  • Rostamizadeh S, Ghaieni HR, Aryan R, et al. Clean one-pot synthesis of 1,2,4-oxadiazoles under solvent-free conditions using microwave irradiation and potassium fluoride as catalyst and solid support. Tetrahedron 2010;66:494–7.
  • Selva A, Zerilli LF, Cavalleri B, et al. Mass spectrometry of heterocyclic compounds. V—Substituent effects on the fragmentation pathways of 3,5-diphenyl-1,2,4-oxadiazole derivatives. Org Mass Spectrom 1974;9:558–66.
  • Balcom D, Furst A. Reductions with Hydrazine Hydrate Catalyzed by Raney Nickel. I. Aromatic Nitro Compounds to Amines1,2. J Am Chem Soc 1953;75:4334.
  • Van Wagenen B, Stormann TM, Moe ST, et al., NPS Pharmaceuticals Inc., Heteropolycyclic compounds and their use as metabotropic glutamate receptor antagonists, US 2003/0055085 A1; 2003.
  • Chruścicka B, Burnat G, Brański P, et al. Tetracycline-based system for controlled inducible expression of group III metabotropic glutamate receptors. J Biomol Screen 2015;20:350–8.
  • Walker BD, Singleton CB, Bursill JA, et al. Inhibition of the human ether-a-go-go-related gene (HERG) potassium channel by cisapride: affinity for open and inactivated states. Br J Pharmacol 1999;128:444–450.
  • Van der Heyden JA, Zethof TJ, Olivier B. Stress-induced hyperthermia in singly housed mice. Physiol Behav 1997;62:463–70.
  • Borsini F, Lecci A, Volterra G, et al. A model to measure anticipatory anxiety in mice? Psychopharmacology 1989;98:207–11.
  • Spooren WP, Schoeffter P, Gasparini F, et al. Pharmacological and endocrinological characterisation of stress-induced hyperthermia in singly housed mice using classical and candidate anxiolytics (LY314582, MPEP and NKP608). Eur J Pharmacol 2002;435:161–70.
  • Steru L, Chermat R, Thierry B, et al. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 1985;85:367–70.