1,909
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

Polycyclic nitrogen heterocycles as potential thymidine phosphorylase inhibitors: synthesis, biological evaluation, and molecular docking study

, , , , , , , , & show all
Pages 252-268 | Received 22 Jul 2021, Accepted 28 Oct 2021, Published online: 22 Dec 2021

References

  • Battaglin F, Puccini A, Intini R, et al. The role of tumor angiogenesis as a therapeutic target in colorectal cancer. Expert Rev Anticancer Ther 2018;18:251–66.
  • Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971;133:275–88.
  • Weidner N, Semple JP, Welch WR, Folkman J. Tumor Angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 1991;324:1–8.
  • Akiyama SI, Furukawa T, Sumizawa T, et al. The role of thymidine phosphorylase, an angiogenic enzyme, in tumor progression. Cancer Sci 2005;95:11851–7.
  • Jayson GC, Kerbel R, Ellis M, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. The Lancet 2016;388:518–29.
  • Bronckaers A, Gago F, Balzarini J, Liekens S. The dual role of thymidine phosphorylase in cancer development and chemotherapy. Med Chem Rev 2009;29:903–53.
  • Elamin YY, Rafee S, Osman N, et al. Thymidine phosphorylase in cancer; enemy or friend? Cancer Microenviron 2016;9:33–43.
  • Bera H, Chigurupati S. Recent discovery of non-nucleobase thymidine phosphorylase inhibitors targeting cancer. Eur J Med Chem 2016;124:992–1003.
  • Brown N, Jones A, Fujiyama C, et al. Cooperative stimulation of vascular endothelial growth factor expression by hypoxia and reactive oxygen species: the effect of targeting vascular endothelial growth factor and oxidative stress in an orthotopic xenograft model of bladder carcinoma. Cancer Res 2000;60:6298–302.
  • Bijnsdorp IV, Capriotti F, Kruyt FAE, et al. Thymidine phosphorylase in cancer cells stimulates human endothelial cell migration and invasion by the secretion of angiogenic factors. Br J Cancer 2011;104:1185–92.
  • Walter MR, Cook WJ, Cole LB, et al. Three-dimensional structure of thymidine phosphorylase from Escherichia coli at 2.8 A resolution. J Biol Chem 1990;265:14016–22.
  • Norman RA, Barry ST, Bate M, et al. Crystal structure of human thymidine phosphorylase in complex with a small molecule inhibitor. Structure 2004;12:75–84.
  • El Omari K, Bronckaers A, Liekens S, et al. Structural basis for non-competitive product inhibition in human thymidine phosphorylase: implications for drug design. Biochem J 2006;399:199–204.
  • Mitsiki E, Papageorgiou AC, Iyer S, et al. Structures of native human thymidine phosphorylase and in complex with 5-iodouracil. Biochem Biophys Res Commun 2009;386:666–70.
  • Timofeev VI, Abramchik YA, Fateev IV, et al. Three-dimensional structure of thymidine phosphorylase from E. coli in complex with 3'-azido-2'-fluoro-2',3'-dideoxyuridine. Crystallogr Rep 2013;58:842–53.
  • Timofeev V, Abramchik Y, Zhukhlistova N, et al. 3′‐Azidothymidine in the active site of Escherichia coli thymidine phosphorylase: the peculiarity of the binding on the basis of X‐ray study. Acta Crystallogr Sect D 2014;70:1155–65.
  • Pérez-Pérez MJ, Priego EM, Hernandez AN, et al. Thymidine phosphorylase inhibitors: recent developments and potential therapeutic applications. Mini Rev Med Chem 2005;5:1113–23.
  • Nencka R. Anti-angiogenesis drug discovery and development. Amsterdam (The Netherlands): Wiley; 2011:116–47.
  • Sajid MA, Khan ZA, Shahzad SA, et al. Recent advances in thymidine phosphorylase inhibitors: syntheses and prospective medicinal applications. Turk J Chem 2017;41:1–28.
  • Balzarini J, Gamboa AE, Esnouf R, et al. 7-Deazaxanthine, a novel prototype inhibitor of thymidine phosphorylase. FEBS Lett 1998;438:91–5.
  • Fukushima M, Suzuki N, Emura T, et al. Structure and activity of specific inhibitors of thymidine phosphorylase to potentiate the function of antitumor 2'-deoxyribonucleosides. Biochem Pharmacol 2000;59:1227–36.
  • Matsuhita S, Nitanda T, Furukawa T, et al. The effect of a thymidine phosphorylase inhibitor on angiogenesis and apoptosis in tumors. Cancer Res 1999;50:1911–6.
  • Takao S, Akiyama SI, Nakajo A, et al. Suppression of metastasis by thymidine phosphorylase inhibitor. Cancer Res 2000;60:5345–8.
  • Yano S, Kazuno H, Sato T, et al. Synthesis and evaluation of 6-methylene-bridged uracil derivatives. Part 2: optimization of inhibitors of human thymidine phosphorylase and their selectivity with uridine phosphorylase. Bioorg Med Chem 2004;12:3443–50.
  • Raedler LA. Lonsurf (trifluridine plus tipiracil): a new oral treatment approved for patients with metastatic colorectal cancer. Am Health Drug Benefits 2016; 9:97–100.
  • Tratrat C, Giorgi-Renault S, Husson HP. A multicomponent reaction for the one-pot synthesis of 4-aza-2,3-didehydropodophyllotoxin and derivatives. Org Lett 2002;4:3187–9.
  • Aknin K, Desbène-Finck S, Helissey P, Giorgi-Renault S. A new synthetic approach to functionalize pyrimido[4,5-b]quinoline-2,4(1H,3H)-diones via a three-component one-pot reaction. Mol Divers 2010;14:123–30.
  • Tourteau A, Merlet E, Bontemps A, et al. Easy access to 1H‐pyrrolo[3′,4′:5,6]pyrido[2,3‐d]pyrimidine‐ 2,4,6,8(3H,7H)‐tetraone and selectively N7‐substituted analogues through key synthons. Eur J Org Chem 2015;32:7028–35.
  • Conrad M, Reinbach H. Condensationen von barbitursäure und aldehyden. Ber Dtsch Chem Ges 1901;34:1339–44.
  • Tröger J, Cohaus C. Über mittels 6‐Amino‐3‐methoxybenzaldehyd ausgeführte Chinolinsynthesen und über ein aus diesen Aldehyden entstehendes Kondensationsprodukt. J Prakt Chem 1927;117:97–116.
  • King FE, King TJ. New potential chemotherapeutic agents. Part VI. Derivatives of 1: 3-diaza-acridine. J Chem Soc 1947;726–34.
  • Tominaga Y, Okuda H, Kohra S, Mazume H. Synthesis of pyrimidine derivatives using N‐bis(methylthio)methylenecyanamide. J Heterocycl Chem 1991;28:1245–55.
  • Kokel B. The reaction of N,N‐dimethyldichloromethyleniminium chloride (phosgeniminium chloride) with 6‐N‐arylaminouracils. A new and convenient “one pot” synthesis of l,3‐dimethyl‐5‐ dimethylaminopyrimido[4,5‐b]quinoline‐(1H,3H)‐2,4‐ diones, 1,3‐dimethyl‐5‐chloropyrimido[4,5‐b]quinoline‐(1H,3H)‐2,4‐diones and 3‐ methyl‐10‐alkyl‐5‐chloropyrimido[4,5‐b]quinoline‐(3H,10H)‐2,4‐diones (3‐methyl‐ 10‐alkyl‐5‐chloro‐5‐deazaflavins). J Heterocycl Chem 1994;31:845–55.
  • Fang WP, Cheng YT, Cheng YR, Chern YJ. Synthesis of substituted uracils by the reactions of halouracils with selenium, sulfur, oxygen and nitrogen nucleophiles under focused microwave irradiation. Tetrahedron 2005;61:3107–13.
  • Kurasawa Y, Takada A. A convenient synthesis of pyridazino [4,5-b] quinolines and pyrrolo [3,4-b] quinolines. Chem Pharm Bull 1980;28:3457–65.
  • Gal’pern MG, Kudrevich SV, Novozhilova IG. Synthesis and spectroscopic properties of soluble aza analogs of phthalocyanine and naphthalocyanine. Chem Heterocycl Compd 1993;29:49–54.
  • Brown FK, Brown PJ, Bickett DM, et al. Matrix metalloproteinase inhibitors containing a (carboxyalkyl)amino zinc ligand: modification of the P1 and P2' residues. J Med Chem 1994;37:674–88.
  • Hendrickson JB, Rees R, Templeton JF. A new general heterocycle synthesis; use of acetylenedicarboxylic esters. J Am Chem Soc 1964;86:107–11.
  • Peel MR, Sternbach DD. The synthesis and evaluation of flexible analogues of the topoisomerase I inhibitor, camptothecin. Bioorg Med Chem Lett 1994;4:2753–8.
  • Itahara T. NMR and UV Study of 1,1′-(α,ω-Alkanediyl)bis[thymine] and 1,1′-(α,ω- Alkanediyl)bis[uracil]. Bull Chem Soc Jpn 1997;70:2239–47.
  • Browne DT, Eisinger J, Leonard NJ. Synthetic spectroscopic models related to coenzymes and base pairs. II. Evidence for intramolecular base-base interactions in dinucleotide analogs. J Am Chem Soc 1968;90:7302–23.
  • Leonard NJ, McCredie RS, Logue MW, Cundall RL. Synthetic spectroscopic models related to coenzymes and base pairs. XI. Solid state ultraviolet irradiation of 1,1'-trimethylenebisthymine and photosensitized irradiation of 1,1'-polymethylenebisthymines. J Am Chem Soc 1973;95:2320–4.
  • Tjoeng FS, Kraas E, Breitmaier E, Jung G. Einfache darstellung von 2‐amino‐ω‐ (uracil‐l‐yl und thymin‐1‐yl)‐n‐alkansäuren. Chem Ber 1976;109:2615–21.
  • Decout JL, Lhomme J. Synthetic models related to DNA-intercalating molecules a study of the ring-ring stacking interactions between 8-alkoxypsoralen and thymine. Tetrahedron Lett 1981;22:1247–50.
  • Nowick JS, Chen JS, Noronha G. Molecular recognition in micelles: the roles of hydrogen bonding and hydrophobicity in adenine-thymine base-pairing in SDS micelles. J Am Chem Soc 1993;115:7636–44.
  • Nawrot B, Michalak O, Olejniczak S, et al. Alkylation of thymine with 1,2-dibromoethane. Tetrahedron 2001;57:3979–85.
  • Allan AL, Gladstone PL, Price ML, et al. Synthesis and evaluation of multisubstrate bicyclic pyrimidine nucleoside inhibitors of human thymidine phosphorylase. J Med Chem 2006;49:7807–15.
  • Russ P, Schelling P, Scapozza L, et al. Synthesis and biological evaluation of 5-substituted derivatives of the potent antiherpes agent (north)-methanocarbathymine. J Med Chem 2003;46:5045–54.
  • Wade JJ. Synthesis of imidazo[1,5‐c]pyrimidine derivatives. J Heterocyclic Chem 1986;23:981–7.
  • Yano S, Kazuno H, Suzuki N, et al. Synthesis and evaluation of 6-methylene-bridged uracil derivatives. Part 1: discovery of novel orally active inhibitors of human thymidine phosphorylase. Bioorg Med Chem 2004;12:3431–41.
  • Khan KM, Ambreen N, Hussain S, et al. Schiff bases of 3-formylchromone as thymidine phosphorylase inhibitors. Bioorg Med Chem 2009;17:2983–8.
  • Panova NG, Alexeev CS, Kuzmichov AS, et al. Substrate specificity of Escherichia coli thymidine phosphorylase. Biochemistry 2007;72:21–8.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.