1,667
Views
0
CrossRef citations to date
0
Altmetric
Research Papers

Searching for drug leads targeted to the hydrophobic cleft of dengue virus capsid protein

, ORCID Icon, , , , , & ORCID Icon show all
Pages 287-298 | Received 12 Sep 2021, Accepted 03 Nov 2021, Published online: 11 Dec 2021

References

  • Guzman MG, Gubler DJ, Izquierdo A, et al. Dengue infection. Nat Rev Dis Prim 2016;2:1–25.
  • Diamond MS, Pierson TC. Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell. Cell Press 2015;162:488–92.
  • Jones CT, Ma L, Burgner JW, et al. Flavivirus capsid is a dimeric alpha-helical protein. J Virol 2003;77:7143–9.
  • Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 2005;3:13–22.
  • Neves-Martins TC, Mebus-Antunes NC, Caruso IP, et al. Unique structural features of flaviviruses' capsid proteins: new insights on structure-function relationship. Curr Opin Virol 2021;47:106–12.
  • Morando MA, Barbosa GM, Cruz-Oliveira C, et al. Dynamics of zika virus capsid protein in solution: the properties and exposure of the hydrophobic cleft are controlled by the α-Helix 1 sequence. Biochemistry 2019;58:2488–98.
  • Samsa MM, Mondotte JA, Iglesias NG, et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. Diamond MS, editor. PLoS Pathog 2009;5:e1000632.
  • Martins IC, Gomes-Neto F, Faustino AF, et al. The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif. Biochem J 2012;444:405–15.
  • Faustino AF, Guerra GM, Huber RG, et al. Understanding dengue virus capsid protein disordered N-terminus and pep14-23-based inhibition. ACS Chem Biol 2015;10:517–26.
  • Poh MK, Yip A, Zhang S, et al. A small molecule fusion inhibitor of dengue virus. Antiviral Res 2009;84:260–6.
  • Steuer C, Gege C, Fischl W, et al. Synthesis and biological evaluation of α-ketoamides as inhibitors of the Dengue virus protease with antiviral activity in cell-culture. Bioorg Med Chem 2011;19:4067–74.
  • Xie X, Wang Q-Y, Xu HY, et al. Inhibition of dengue virus by targeting viral NS4B protein. J Virol 2011;85:11183–95.
  • Lim SP, Sonntag LS, Noble C, et al. Small molecule inhibitors that selectively block dengue virus methyltransferase. J Biol Chem 2011;286:6233–40.
  • Chen Y-L, Yin Z, Duraiswamy J, et al. Inhibition of dengue virus RNA synthesis by an adenosine nucleoside. Antimicrob Agents Chemother 2010;54:2932–9.
  • Niyomrattanakit P, Chen YL, Dong H, et al. Inhibition of dengue virus polymerase by blocking of the RNA tunnel. J Virol 2010;84:5678–86.
  • Wang Q-Y, Kondreddi RR, Xie X, et al. A translation inhibitor that suppresses dengue virus in vitro and in vivo. Antimicrob Agents Chemother 2011;55:4072–80.
  • Scaturro P, Trist IML, Paul D, et al. Characterization of the mode of action of a potent dengue virus capsid inhibitor. J Virol 2014;88:11540–55.
  • Byrd CM, Dai D, Grosenbach DW, et al. A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob Agents Chemother 2013;57:15–25.
  • Xia H, Xie X, Zou J, et al. A cocrystal structure of dengue capsid protein in complex of inhibitor. Proc Natl Acad Sci USA 2020;117:17992–8001.
  • Andreani A, Burnelli S, Granaiola M, et al. New antitumor Imidazo[2,1-b]Thiazole guanylhydrazones and analogues. J Med Chem 2008;51:809–16.
  • Banday AH, Akram SMM, Shameem SA. Benzylidine pregnenolones and their oximes as potential anticancer agents: synthesis and biological evaluation. Steroids 2014;84:64–9.
  • Harini ST, Kumar HV, Rangaswamy J, et al. Synthesis, antioxidant and antimicrobial activity of novel vanillin derived piperidin-4-one oxime esters: preponderant role of the phenyl ester substituents on the piperidin-4-one oxime core. Bioorg Med Chem Lett 2012;22:7588–92.
  • Singh B, Maheshwari A, Dak G, et al. Studies of antimicrobial activities of some 4-thiazolidinone fused pyrimidines, [1,5]-benzodiazepines and their oxygen substituted hydroxylamine derivatives. Indian J Pharm Sci 2010;72:607–12.
  • Lazić J, Ajdačić V, Vojnovic S, et al. Bis-guanylhydrazones as efficient anti-Candida compounds through DNA interaction. Appl Microbiol Biotechnol 2018;102:1889–901.
  • Rossello A, Bertini S, Lapucci A, et al. Synthesis, antifungal activity, and molecular modeling studies of new inverted oxime ethers of oxiconazole. J Med Chem 2002;45:4903–12.
  • Zhang L, Jiang CS, Gao LX, et al. Design, synthesis and in vitro activity of phidianidine B derivatives as novel PTP1B inhibitors with specific selectivity. Bioorg Med Chem Lett 2016;26:778–81.
  • Shamroukh AH, Zaki MEA, Morsy EMH, et al. Synthesis of pyrazolo[4',3':5,6]pyrano[2,3-d]pyrimidine derivatives for antiviral evaluation. Arch Pharm 2007;340:236–43.
  • Degardin M, Wein S, Duckert J-F, et al. Development of the first oral bioprecursors of bis-alkylguanidine antimalarial drugs. ChemMedChem 2014;9:300–4.
  • Papanastasiou I, Tsotinis A, Zoidis G, et al. Design and synthesis of Trypanosoma brucei active 1-alkyloxy and 1-benzyloxyadamantano 2-guanylhydrazones. ChemMedChem 2009;4:1059–62.
  • Mohassab AM, Hassan HA, Abdelhamid D, et al. Novel quinoline incorporating 1,2,4-triazole/oxime hybrids: synthesis, molecular docking, anti-inflammatory, COX inhibition, ulceroginicity and histopathological investigations. Bioorg Chem 2017;75:242–59.
  • Ottanà R, Maccari R, Barreca ML, et al. 5-Arylidene-2-imino-4-thiazolidinones: design and synthesis of novel anti-inflammatory agents. Bioorg Med Chem 2005;13:4243–52.
  • Petronilho E da C, Rennó M do N, Castro NG, et al. Design, synthesis, and evaluation of guanylhydrazones as potential inhibitors or reactivators of acetylcholinesterase. J Enzyme Inhib Med Chem 2016;31:1069–78.
  • Prasad RN, McKay AF. Acylation of guanidines and guanylhydrazones. Can J Chem 1967;45:2247–52.
  • Amidi S, Esfahanizadeh M, Tabib K, et al. Rational design and synthesis of 1-(arylideneamino)-4-aryl-1H-imidazole-2-amine derivatives as antiplatelet agents. ChemMedChem 2017;12:962–71.
  • Bonomi P, Servant A, Resmini M. Modulation of imprinting efficiency in nanogels with catalytic activity in the Kemp elimination. J Mol Recognit 2012;25:352–60.
  • Jiménez-Juárez R, Cruz-Chávez W, de Jesús-Ramírez N, et al. Synthesis and antimycobacterial activity of 2,5-disubstituted and 1,2,5-trisubstituted benzimidazoles. Front Chem 2020;8: 433.
  • Irfan I, Sawangjaroen N, Bhat AR, et al. New dioxazole derivatives: synthesis and effects on the growth of Entamoeba histolytica and Giardia intestinalis. Eur J Med Chem 2010;45:1648–53.
  • Trefzger OS, Barbosa NV, Scapolatempo RL, et al. Design, synthesis, antileishmanial, and antifungal biological evaluation of novel 3,5‐disubstituted isoxazole compounds based on 5‐nitrofuran scaffolds. Arch Pharm 2020;353:1900241.
  • Carvalho FAA, Carneiro FAA, Martins ICC, et al. Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J Virol 2012;86:2096–108.
  • Hwang TL, Shaka AJ. Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson Ser A 1995;112:275–9.
  • Grzesiek S, Bax A. The importance of not saturating water in protein NMR. Application to sensitivity enhancement and NOE measurements. J Am Chem Soc 1993;115:12593–4.
  • Kay L, Keifer P, Saarinen T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 1992;114:10663–5.
  • Palmer AG, Cavanagh J, Wright PE, et al. Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson 1991;93:151–70.
  • Schleucher J, Schwendinger M, Sattler M, et al. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J Biomol NMR 1994;4:301–6.
  • Vranken WF, Boucher W, Stevens TJ, et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins Struct Funct Genet 2005;59:687–96.
  • Ma L, Jones CT, Groesch TD, et al. Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci USA 2004;101:3414–9.
  • Markley JL, Ulrich AEEL, Berman AEHM, et al. BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting biomolecular NMR depositions. J Biomol NMR 2008;40:153–5.
  • Caruso IP, Guimarães GC, Machado VB, et al. Biophysical and dynamic characterization of fine-tuned binding of the human respiratory syncytial virus M2-1 core domain to long RNAs. J Virol 2020;94(23):e01505-20.
  • Sander T, Freyss J, von Korff M, et al. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 2015;55:460–73.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09. Wallingford, CT: Gaussian, Inc.; 2016.
  • Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model 1999;17:57–61.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2009;31:NA.
  • Salentin S, Schreiber S, Haupt VJ, et al. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 2015;43:W443–W447.
  • Delano WL, The PyMOL molecular graphics system. San Carlos (CA): DeLano Scientific; 2002.
  • Hunan Huateng Pharmaceutical Co. L. A kind of preparation method of bridged piperazine derivatives. Republic of China Patent. CN106810513A, filed October 1, 2017, and issued September 6, 2017.
  • Dengke L, Xiaoli F, Ying L, et al. Preparation of 6,7-dihydro-4H-thieno[3,2-c]pyridine derivatives for treatment of depression. Republic of China Patent. CN 102503953, filed October 20, 2011, and issued June 20, 2012
  • Figueroa-Villar J, Tinoco L. Spin-lattice relaxation time in drug discovery and design. Curr Top Med Chem 2009;9:811–823.
  • Figueiredo IM, Marsaioli AJ. Mapeamento das interações proteína-ligante através de técnicas de RMN de 1H utilizando detecção do ligante. Quim Nova 2007;30:1597–1605.
  • Weber G. Fluorescence-polarization spectrum and electronic-energy transfer in tyrosine, tryptophan and related compounds. Biochem J 1960;75:335–345.
  • Meanwell NA. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol 2011;24:1420–1456.
  • Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRX 2005;2:541–553.
  • Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 2004;1:337–341.
  • von Korff M, Sander T. Toxicity-indicating structural patterns. J Chem Inf Model 2006;46:536–544.