2,136
Views
3
CrossRef citations to date
0
Altmetric
Research Papers

Design, synthesis, and biological evaluation of biotinylated colchicine derivatives as potential antitumor agents

, , , , , & show all
Pages 417-426 | Received 06 Jul 2021, Accepted 29 Nov 2021, Published online: 16 Dec 2021

References

  • Chabner BA, Roberts TG. Jr , Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 2005;5:65–72.
  • Mahato R, Tai W, Cheng K. Prodrugs for improving tumor targetability and efficiency. Adv Drug Deliv Rev 2011;63:659–70.
  • Chan Y, Wong T, Byrne F, et al. Acid-labile core cross-linked micelles for pH-triggered release of antitumor drugs. Biomacromolecules 2008;9:1826–36.
  • Ye M, Wang X, Tang J, et al. Dual-channel NIR activatable theranostic prodrug for in vivo spatiotemporal tracking thiol-triggered chemotherapy. Chem Sci 2016;7:4958–65.
  • Liu P, Xu J, Yan D, et al. A DT-diaphorase responsive theranostic prodrug for diagnosis, drug release monitoring and therapy. Chem Commun 2015;51:9567–70.
  • Zhang C, Qu Y, Ma X, et al. NQO1-selective activated prodrugs of combretastatin A-4: synthesis and biological evaluation. Bioorg Chem 2020;105:104450.
  • Liang Y, Huang W, Zeng D, et al. Cancer-targeted design of bioresponsive prodrug with enhanced cellular uptake to achieve precise cancer therapy. Drug Deliv 2018;25:1350–61.
  • Fernandez-Mejia C. Pharmacological effects of biotin. J Nutr Biochem 2005;16:424–7.
  • Chen S, Zhao X, Chen JY, et al. Mechanism-based tumor-targeting drug delivery system. validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjug Chem 2010;21:979–87.
  • Shin WS, Han J, Verwilst P, et al. Cancer targeted enzymatic theranostic prodrug: precise diagnosis and chemotherapy. Bioconjug Chem 2016;27:1419–26.
  • Jain AK, Gund MG, Desai DC, et al. Mutual prodrugs containing bio-cleavable and drug releasable disulfide linkers. Bioorg Chem 2013;49:40–8.
  • Santra S, Kaittanis C, Santiesteban OJ, et al. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J Am Chem Soc 2011;133:16680–8.
  • Amano Y, Umezawa N, Sato S, et al. Activation of lysine-specific demethylase 1 inhibitor peptide by redox-controlled cleavage of a traceless linker. Bioorg Med Chem 2017;25:1227–34.
  • Lv Q, Yang J, Zhang R, et al. Prostate-specific membrane antigen targeted therapy of prostate cancer using a DUPA-paclitaxel conjugate. Mol Pharm 2018;15:1842–52.
  • Kularatne SA, Venkatesh C, Santhapuram HK, et al. Synthesis and biological analysis of prostate-specific membrane antigen-targeted anticancer prodrugs. J Med Chem 2010;53:7767–77.
  • Ghawanmeh AA, Chong KF, Sarkar SM, et al. Colchicine prodrugs and codrugs: chemistry and bioactivities. Eur J Med Chem 2018;144:229–42.
  • Gracheva IA, Shchegravina ES, Schmalz HG, et al. Colchicine alkaloids and synthetic analogues: current progress and perspectives. J Med Chem 2020;63:10618–51.
  • Guan J, Zhu XK, Tachibana Y, et al. Antitumor agents. 185. synthesis and biological evaluation of tridemethylthiocolchicine analogues as novel topoisomerase II inhibitors. J Med Chem 1998;41:1956–61.
  • Bergemann S, Brecht R, Büttner F, et al. Novel B-ring modified allocolchicinoids of the NCME series: design, synthesis, antimicrotubule activity and cytotoxicity. Bioorg Med Chem 2003;11:1269–81.
  • Ahmed A, Peters NR, Fitzgerald MK, et al. Colchicine glycorandomization influences cytotoxicity and mechanism of action. J Am Chem Soc 2006;128:14224–5.
  • Mons S, Veretout F, Carlier M, et al. The interaction between lipid derivatives of colchicine and tubulin: consequences of the interaction of the alkaloid with lipid membranes. Biochim Biophys Acta 2000;1468:381–95.
  • Ranaivoson FM, Gigant B, Berritt S, et al. Structural plasticity of tubulin assembly probed by vinca-domain ligands. Acta Crystallogr D Biol Crystallogr 2012;68:927–34.
  • Smith RL, Åstrand OA, Nguyen LM, et al. Synthesis of a novel legumain-cleavable colchicine prodrug with cell-specific toxicity. Bioorg Med Chem 2014;22:3309–15.
  • Svirshchevskaya EV, Gracheva IA, Kuznetsov AG, et al. Antitumor activity of furanoallocolchicinoid-chitosan conjugate. Med Chem 2016;6:571–7.
  • Shchegravina ES, Tretiakova DS, Alekseeva AS, et al. Phospholipidic colchicinoids as promising prodrugs incorporated into enzyme-responsive liposomes: chemical, biophysical, and enzymological aspects. Bioconjug Chem 2019;30:1098–113.
  • Bagnato JD, Eilers AL, Horton RA, et al. Grissom, Synthesis and characterization of a cobalamin-colchicine conjugate as a novel tumor-targeted cytotoxin. J Org Chem 2004;69:8987–96.
  • Lee MH, Kim EJ, Lee H, et al. Liposomal texaphyrin theranostics for metastatic liver cancer. J Am Chem Soc 2016;138:16380–7.
  • Vilanova C, Díaz-Oltra S, Murga J, et al. Design and synthesis of pironetin analogue/colchicine hybrids and study of their cytotoxic activity and mechanisms of interaction with tubulin. J Med Chem 2014;57:10391–403.
  • Wang C, Li Y, Liu Z, et al. Design, synthesis and biological evaluation of 1-Aryl-5-(4-arylpiperazine-1-carbonyl)-1H-tetrazols as novel microtubule destabilizers. J Enzyme Inhib Med Chem 2021;36:549–60.
  • Wang C, Wang Z, Gao M, et al. Design, synthesis and anticancer activity of 5-aryl-4-(4-arylpiperazine-1-carbonyl)-1,2,3-thiadiazoles as microtubule-destabilizing agents. Bioorg Chem 2021;106:104199.