1,810
Views
3
CrossRef citations to date
0
Altmetric
Research Papers

Rational design and synthesis of 2-(1H-indazol-6-yl)-1H-benzo[d]imidazole derivatives as inhibitors targeting FMS-like tyrosine kinase 3 (FLT3) and its mutants

, , , , , , & show all
Pages 472-486 | Received 26 Aug 2021, Accepted 14 Dec 2021, Published online: 23 Jan 2022

References

  • Schumacher A, Wewers D, Heinecke A, et al. Fatigue as an important aspect of quality of life in patients with acute myeloid leukemia. Leuk Res 2002;26:355–62.
  • Lucena-Araujo AR, Kim HT, Jacomo RH, et al. Internal tandem duplication of the FLT3 gene confers poor overall survival in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based chemotherapy: an International Consortium on Acute Promyelocytic Leukemia. Ann. Hematol 2014;93:2001–10.
  • Prada-Arismendy J, Arroyave JC, Röthlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev 2017;31:63–76.
  • O’Donnell MR, Tallman MS, Abboud CN, et al. Acute myeloid leukemia, version 3.2017: clinical practice guidelines in oncology. J Natl Compr Cancer Netw 2017;15:926–57.
  • Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet 2018;392:593–606.
  • Drexler HG. Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia 1996;10:588–99.
  • Zhang S, Fukuda S, Lee Y, et al. Essential role of signal transducer and activator of transcription (STAT)5a but Not Stat5b for FLT3-dependent signaling. J Exp Med 2000;192(5):719–728.
  • Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications. J. Hematol. Oncol 2011;4:13.
  • Gary Gilliland D, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002;100:1532–42.
  • Larrosa-Garcia M, Baer MR. FLT3 Inhibitors in acute myeloid leukemia: current status and Future Directions. Mol Cancer Ther 2017;16:991–1001.
  • Chen Y, Pan Y, Guo Y, et al. Tyrosine kinase inhibitors targeting FLT3 in the treatment of acute myeloid leukemia. Stem Cell Investig 2017;4:13–48.
  • Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Hematology Am Soc Hematol Educ Program 2013;2013:220–6.
  • Sun D, Yang Y, Lyu J, et al. Discovery and rational design of pteridin-7(8H)-one-based inhibitors targeting FMS-like tyrosine kinase 3 (FLT3) and its mutants. J Med Chem 2016;59:6187–200.
  • Versele M, Haefner B, Wroblowski B, et al. Abstract 4800: covalent FLT3-cys828 inhibition represents a novel therapeutic approach for the treatment of FLT3-ITD and FLT3-D835 mutant acute myeloid leukemia, Cancer Res. 2016:76:4800.
  • Blanc J, Geney R, Menet C. Type II kinase inhibitors: an opportunity in cancer for rational design. Anticancer Agents Med Chem 2013;13:731–47.
  • Liu Y, Gray NS. Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2006;2:358–64.
  • Alexander LT, Möbitz H, Drueckes P, et al. Type II inhibitors targeting CDK2. ACS Chem Biol 2015;10:2116–25.,
  • Mori M, Kaneko N, Ueno Y, et al. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest New Drugs 2017;35:556–65.
  • Perl AE, Altman JK, Cortes J, et al. Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1–2 study. Lancet Oncol 2017;18:1061–75.
  • Im D, Moon H, Kim J, et al. Conformational restriction of a type II FMS inhibitor leading to discovery of 5-methyl-N-(2-aryl-1H-benzo[d]imidazo-5-yl)isoxazole-4-carboxamide analogues as selective FLT3 inhibitors. J Enzyme Inhib Med Chem 2019;34:1716–21.
  • Im D, Moon H, Kim J, et al. Discovery of 5-methyl-N-(2-arylquinazolin-7-yl)isoxazole-4-carboxamide analogues as highly selective FLT3 inhibitors. J Enzyme Inhib Med Chem 2020;35:1110–5.
  • Kamal A, Reddy K, Devaiah V, et al. Recent advances in the solid-phase combinatorial synthetic strategies for the quinoxaline, quinazoline and benzimidazole based privileged structures. Mini Rev Med Chem 2006;6:71–89.
  • Thatipally S, Acharyulu PVR, Dubey PK. Pyridinium p-toluenesulfonate: a mild and efficient catalyst for the regioselective tetrahydropyranylation of indazole derivatives under solvent-free conditions. Asian J Chem 2011;23:451–4.
  • Al-Ebaisat H. Evaluation of biological activity of some benzimidazole derivatives as antifungal. Int Res J Pure Appl Chem 2015;8:19–25.
  • Smith CC, Lin K, Stecula A, et al. FLT3 D835 mutations confer differential resistance to type II FLT3 inhibitors. Leukemia 2015;29:2390–2.
  • Smith CC, Lin KC, Zhang Y, et al. Characterizing and overriding the structural mechanism of the quizartinib-resistant FLT3 “gatekeeper” F691L Mutation with PLX3397. Cancer Discov 2015;5:60.
  • Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res 2019;144:19–50.
  • Chao Q, Sprankle KG, Grotzfeld RM, et al. Identification of N-(5-tert-butyl-isoxazol-3-yl)-N′-{4-[7-(2- morpholin-4-yl-ethoxy)imidazo-[2,1-b][1,3]benzothiazol-2-yl]phenyl}urea dihydrochloride (AC220), a uniquely potent, selective, and efficacious FMS-like tyrosine kinase-3 (FLT3) inhibitor. J Med Chem 2009;52:7808–16.