2,422
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

In vitro α-glucosidase inhibition by Brazilian medicinal plant extracts characterised by ultra-high performance liquid chromatography coupled to mass spectrometry

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 554-562 | Received 22 Oct 2021, Accepted 20 Dec 2021, Published online: 14 Feb 2022

References

  • Kimura A, Lee JH, Lee IS, et al. Two potent competitive inhibitors discriminating alpha-glucosidase family I from family II. Carbohydr Res 2004;339:1035–40.
  • Lebovitz HE. Alpha-glucosidase inhibitors. Endocrinol Metab Clin North Am 1997;26:539–51.
  • Scheen AJ. Is there a role for α-glucosidase inhibitors in the prevention of type 2 diabetes mellitus? Drugs 2003;63:933–51.
  • Baron AD. Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Res Clin Pract 1998;40:S51–S5.
  • Kumar S, Narwal S, Kumar V, Prakash O. α-Glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev 2011;5:19–29.
  • Myers N, Mittermeier RA, Mittermeier CG, et al. Biodiversity hotspots for conservation priorities. Nature 2000;403:853–8.
  • Mittermeier RA, Robles Gil P, Hoffmann M, et al., editors. Hotspots revisited: earth's biologically richest and most endangered terrestrial ecoregions; revised edition. Mexico City: Conservation International; 2005:392.
  • Tabarelli M, Pinto LP, Silva JM, et al. Challenges and opportunities for biodiversity conservation in the Brazilian Atlantic Forest. Conserv Biol 2005;19:695–700.
  • Cardoso D, Särkinen T, Alexander S, et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc Natl Acad Sci USA 2017;114:10695–700.
  • Ribeiro MC, Metzger JP, Martensen AC, et al. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 2009;142:1141–53.
  • Arika WM, Abdirahman YA, Mawia MM, et al. Hypoglycemic effect of Lippia javanica in alloxan induced diabetic mice. J Diabetes Metab 2015;6:624–30.
  • Pascual ME, Slowing K, Carretero E, et al. Lippia: traditional uses, chemistry and pharmacology: a review. J Ethnopharmacol 2001;76:201–14.
  • Maroyi A. Lippia scaberrima Sond. (Verbenaceae): traditional uses, phytochemical and pharmacological properties. J Pharm Sci 2019;11:3685–90.
  • El-Ouady F, Eddouks M. Antihyperglycemic and antihyperlipidemic effects of Lippia citriodora in rats. Endocr Metab Immune Disord Drug Targets 2021;21:711–9.
  • Al-Snai AE. Pharmacological and therapeutic effects of Lippia nodiflora (Phyla nodiflora). IOSR J Pharm 2019;9:15–25.
  • Ngugi MP, Kimuni NS, Ngeranwa NJ, et al. Antidiabetic and safety of Lantana rhodesiensis in alloxan induced diabetic rats. J Dev Drugs 2015;4:129.
  • Venkatachalam T, Kumar VK, Selvi PK, et al. Antidiabetic activity of Lantana camara Linn fruits in normal and streptozotocin-induced diabetic rats. J Pharm Res 2011;4:1550–2.
  • Kumar KV, Sharief SD, Rajkumar R, et al. Antidiabetic potential of Lantana aculeata root extract in alloxan-induced diabetic rats. Int J Phytomed 2010;2:299–303.
  • Nayak S. Evaluation of antidiabetic and antioxidant activity of aerial parts of Hyptis suaveolens Poit. Afr J Pharm Pharmacol 2013;7:1–7.
  • Ogar I, Egbung GE, Nna VU, et al. Anti-hyperglycemic potential of Hyptis verticillata Jacq in streptozotocin-induced diabetic rats. Biomed Pharmacother 2018;107:1268–76.
  • Hernandez-Galicia E, Aguilar-Contreras A, Aguilar-Santamaria L, et al. Studies on hypoglycemic activity of Mexican medicinal plants. Proc West Pharmacol Soc 2002;45:118–24.
  • Esquivel-Gutiérrez ER, Noriega-Cisneros R, Saavedra-Molina A, Salgado-Garciglia R. Plants used in Mexican folk medicine with antidiabetic and antihypertensive properties. Pharmacol Online 2013;2:15–23.
  • Gandhi GR, Ignacimuthu S, Paulraj MG. Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats. Food Chem Toxicol 2011;49:2725–33.
  • Sugunabai J, Jayaraj M, Karpagam T, Varalakshmi B. Antidiabetic efficiency of Moringa oleifera and Solanum nigrum. Int J Pharm Pharm Sci 2014;6:40–2.
  • Doss A, Palaniswamy M, Angayarkanni J, Dhanabalan R. Antidiabetic activity of water extract of Solanum trilobatum (Linn.) in alloxan-induced diabetes in rats. Afr J Biotechnol 2009;8:5562–4.
  • Kandimalla R, Kalita S, Choudhury B, Kotoky J. A review on anti-diabetic potential of genus Solanum (Solanaceae). J Drug Deliv Ther 2015;5:24–7.
  • Bouslimani A, Sanchez LM, Garg N, Dorrestein PC. Mass spectrometry of natural products: current, emerging and future technologies. Nat Prod Rep 2014;31:718–29.
  • Martínez-Fructuoso L, Pereda-Miranda R, Rosas-Ramírez D, et al. Structure elucidation, conformation, and configuration of cytotoxic 6-heptyl-5,6-dihydro-2H-pyran-2-ones from Hyptis species and their molecular docking to α-tubulin. J Nat Prod 2019;82:520–31.
  • Martins GR, Fonseca TS, Martínez-Fructuoso L, et al. Antifungal phenylpropanoid glycosides from Lippia rubella. J Nat Prod 2019;82:566–72.
  • Castellar A, Coelho TS, Silva PEA, et al. The activity of flavones and oleanolic acid from Lippia lacunosa against susceptible and resistant Mycobacterium tuberculosis strains. Rev Bras Farmacogn 2011;21:835–40.
  • Leitão SG, Leitão GG, Vicco DKT, et al. Counter-current chromatography with off-line detection by ultra high performance liquid chromatography/high resolution mass spectrometry in the study of the phenolic profile of Lippia origanoides. J Chromatogr A 2017;1520:83–90.
  • Julião LS, Piccinelli AL, Leitão SG, et al. Phenylethanoid glycosides from Lantana fucata Lindl. with in vitro antiinflammatory activity. J Nat Prod 2009;72:1424–8.
  • Julião LS, Leitão SG, Lotti C, et al. Flavones and phenylpropanoids from a sedative extract of Lantana trifolia L. Phytochemistry 2010;71:294–300.
  • Leitão F, Moreira DL, Almeida MZ, Leitão SG. Secondary metabolites from the mistletoes Struthanthus marginatus and S. concinnus (Loranthaceae). Biochem Syst Ecol 2013;48:215–8.
  • Venditti A, Maggi F, Vittori S, et al. Antioxidant and α-glucosidase inhibitory activities of Achillea tenorii. Pharm Biol 2015;53:1505–10.
  • Leitão GG, Eladji SS, Melo WAL, Leitao SG, Brown L. Separation of free and glycosylated flavonoids from Siparuna guianensis by gradient and isocratic CCC. J Liq Chromatogr R T 2005;28(12/13):2041–2051.
  • Costa GM, Cárdenas PA, Gazola AC, Aragón DM, Castellanos L, Reginatto FH, Schenkel EP. Isolation of C-glycosylflavonoids with α-glucosidase inhibitory activity from Passiflora bogotensis Benth by gradient high-speed counter-current chromatography. J Chromatogr B 2015;990:104–110.
  • Islam MN, Ishita IJ, Jung HA, Choi JS. Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem Toxicol 2014;69:55–62.
  • Anjitha R, Subbaraya U, Narasimhan, G. Integrated In vitro-In silico screening strategy of Ethanolic extract of leaves of Passiflora edulis Sims var. flavicarpa against Alpha Glucosidase. Res J Pharm Tech 2020; 13(3):1309–1313.
  • Potipiranun T, Adisakwattana S, Worawalai W, Ramadhan R, Phuwapraisirisan P. Identification of Pinocembrin as an Anti-Glycation Agent and α-Glucosidase Inhibitor from Fingerroot (Boesenbergia rotunda): The Tentative Structure–Activity Relationship towards MG-Trapping Activity. Molecules 2018;23(12):3365.
  • Tadera K, Minami Y, Takamatsu K, Matsuoka T. Inhibition of α-glucosidase and α-amylase by flavonoids. J Nutr Sci Vitaminol 2006;52(2):149–153.
  • Amador S, Nieto-Camacho A, Ramírez-Apan MT, Martínez M, Maldonado E. Cytotoxic, anti-inflammatory, and α-glucosidase inhibitory effects of flavonoids from Lippia graveolens (Mexican oregano). Med Chem Res 2020;29:1497–1506.
  • Jaakola L, Hohtola A. Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ 2010;33(8):1239–1247.
  • Giupponi L, Leoni V, Pavlovic R, Giorgi A. Influence of altitude on phytochemical composition of hemp inflorescence: A metabolomic approach. Molecules, 2020;25(6):1381.
  • Chua LS, Abdullah FI, Awang MA. Potential of natural bioactive C-glycosyl flavones for antidiabetic properties. In Stud Nat Prod Chem  2020;64:241–261.
  • Priscilla DH, Roy D, Suresh A, Kumar V, Thirumurugan K. Naringenin inhibits α-glucosidase activity: A promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chem Biol Interact 2014;210:77–85.
  • Setyaningsih EP, Saputri FC, Mun'im A. The Antidiabetic Effectivity of Indonesian Plants Extracts via DPP-IV Inhibitory Mechanism. J Young Pharm 2019;11(2).
  • Adamczyk B, Simon J, Kitunen V, Adamczyk S, Smolander A. Tannins and their complex interaction with different organic nitrogen compounds and enzymes: old paradigms versus recent advances. ChemistryOpen 2017;6(5):610–614.
  • Wong AIC, Huang D. Assessment of the degree of interference of polyphenolic compounds on glucose oxidation/peroxidase assay. J Agr Food Chem 2014;62(20):4571–4576.
  • Dubey S, Ganeshpurkar A, Ganeshpurkar A, Bansal D, Dubey N. Glycolytic enzyme inhibitory and antiglycation potential of rutin. Future J Pharm Sci 2017;3(2):158–162.
  • Islam MN, Jung HA, Sohn HS, Kim H M, Choi J S. Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris. Archiv Pharm Res 2013;36(5):542–552.
  • Flores-Bocanegra L, Pérez-Vásquez A, Torres-Piedra M, Bye R, Linares E, Mata R. α-Glucosidase inhibitors from Vauquelinia corymbosa. Molecules 2015;20(8):15330–15342.
  • Li YQ, Zhou FC, Gao F, Bian JS, Shan F. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. J Agric Food Chem 2009;57(24):11463–11468.
  • Cai Y, Wu L, Lin X, Hu X, Wang L. Phenolic profiles and screening of potential α-glucosidase inhibitors from Polygonum aviculare L. leaves using ultra-filtration combined with HPLC-ESI-qTOF-MS/MS and molecular docking analysis. Ind Crops Prod 2020;154:112673.
  • Tang G, Liu X, Gong X, Lin X, Lai X, Wang D, Ji S. Studies on the chemical compositions of Hyptis suaveolens (L.) Poit. J Serb Chem 2019;84(3):245–252.
  • Abedini A, Roumy V, Mahieux S, Biabiany M, Standaert-Vitse A, Rivière C, Hennebelle T. Rosmarinic acid and its methyl ester as antimicrobial components of the hydromethanolic extract of Hyptis atrorubens Poit. (Lamiaceae). Evid Based Complement Alternat Med 2013;2013.