5,859
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Research progress of coumarins and their derivatives in the treatment of diabetes

, , &
Pages 616-628 | Received 25 Oct 2021, Accepted 27 Dec 2021, Published online: 24 Jan 2022

References

  • Basappa VC, Kameshwar VH, Kumara K, et al. Design and synthesis of coumarin-triazole hybrids: biocompatible anti-diabetic agents, in silico molecular docking and ADME screening. Heliyon 2020;6:e05290.
  • Ohkuma T, Chalmers J, Cooper M, et al. The comparative effects of intensive glucose lowering in diabetes patients aged below or above 65 years: results from the ADVANCE trial. Diabetes Obes Metab 2021;23:1292–300.
  • Li M, Yuan T, Li S, Sun Q. Nomogram analysis of the influencing factors of diabetic foot in patients with diabetes mellitus. Hormones 2021;20:333–8.
  • Santos-Pardo I, Lagerqvist B, Ritsinger V, et al. Risk of stent failure in patients with diabetes treated with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors: a nationwide observational study. Int J Cardiol 2021;330:23–9.
  • Gaur A, Lewis EL, Hergarden AC, et al. Effects of naturally occurring genetic variations in incretin receptors on glucose homeostasis. Metabolism 2021;116:154530.
  • Hussain MA, Laimon-Thomson E, Mustafa SM, et al. Detour ahead: incretin hormone signaling alters its intracellular path as β-cell failure progresses during diabetes. Front Endocrinol 2021;12:665345.
  • Bianchini G, Nigro C, Sirico A, et al. A new synthetic dual agonist of GPR120/GPR40 induces GLP-1 secretion and improves glucose homeostasis in mice. Biomed Pharmacother 2021;139:111613.
  • Nakajima Y, Ito S, Asakura M, et al. A dipeptidyl peptidase-IV inhibitor improves diastolic dysfunction in Dahl salt-sensitive rats. J Mol Cell Cardiol 2019;129:257–65.
  • Cheng C, Jabri S, Taoka BM, Sinz CJ. Small molecule glucagon receptor antagonists: an updated patent review (2015–2019). Expert Opin Ther Pat 2020;30:509–26.
  • Martins FL, Bailey MA, Girardi AC. Endogenous activation of glucagon-like peptide-1 receptor contributes to blood pressure control: role of proximal tubule Na+/H + exchanger isoform 3, renal angiotensin II, and insulin sensitivity. Hypertension 2020;76:839–48.
  • Ahmed S, Islam N, Shahinozzaman M, et al. Virtual screening, molecular dynamics, density functional theory and quantitative structure activity relationship studies to design peroxisome proliferator-activated receptor-γ agonists as anti-diabetic drugs. J Biomol Struct Dyn 2021;39:728–42.
  • Kaneto H, Kimura T, Obata A, et al. Multifaceted mechanisms of action of metformin which have been unraveled one after another in the long history. Int J Mol Sci 2021;22:2596.
  • Cortez I, Hernandez CM, Dineley KT. Enhancement of select cognitive domains with rosiglitazone implicates dorsal hippocampus circuitry sensitive to PPARγ agonism in an Alzheimer's mouse model. Brain Behavior 2021;11:e01973.
  • Guo J, Chen J, Ren W, et al. Citrus flavone tangeretin is a potential insulin sensitizer targeting hepatocytes through suppressing MEK-ERK1/2 pathway. Biochem Biophys Res Commun 2020;529:277–82.
  • Matumba MG, Ayeleso AO, Nyakudya T, et al. Long-term impact of neonatal intake of oleanolic acid on the expression of AMP-activated protein kinase, adiponectin and inflammatory cytokines in rats fed with a high fructose diet. Nutrients 2019;11:226.
  • Shaheen A, Ashiq U, Jamal RA, et al. Design and synthesis of fluoroquinolone derivatives as potent α‐glucosidase inhibitors: in vitro inhibitory screening with in silico docking studies. ChemistrySelect 2021;6:2483–91.
  • Jarosinski MA, Dhayalan B, Rege N, et al. ‘Smart’insulin-delivery technologies and intrinsic glucose-responsive insulin analogues. Diabetologia 2021;64:1016–4.
  • Viana CC, da Silva Praxedes MF, de Sousa WJFN, et al. Influence of sex-based differences on oral anticoagulation control in patients taking coumarin derivatives: a systematic review protocol. JBI Evid Synth 2021;19:477–83.
  • Herrera-Escandón Á, Castaño-Cifuentes O, Plata-Mosquera CA. Use of idarucizumab to revert the anticoagulant effect of dabigatran in heart transplant surgery: an institutional experience. Case Reports Cardiol 2020;2020:6927423.
  • Govindappa M. In silico anti-HIV and anticoagulant activity of [60] fullerene conjugated coumarin and P-coumaric acid isolated from endophytic fungi. Alternaria Species-1. Enliven: Bioinfo 2018;4:001.
  • Hu Y, Hu C, Pan G, et al. Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2021;222:113628.
  • Qin H-L, Zhang Z-W, Ravindar L, Rakesh K. Antibacterial activities with the structure-activity relationship of coumarin derivatives. Eur J Med Chem 2020;207:112832.
  • Liu H, Xia D-G, Chu Z-W, et al. Novel coumarin-thiazolyl ester derivatives as potential DNA gyrase inhibitors: design, synthesis, and antibacterial activity. Bioorg Chem 2020;100:103907.
  • Alfayomy AM, Abdel-Aziz SA, Marzouk AA, et al. Design and synthesis of pyrimidine-5-carbonitrile hybrids as COX-2 inhibitors: anti-inflammatory activity, ulcerogenic liability, histopathological and docking studies. Bioorg Chem 2021;108:104555.
  • Nayeli M-B, Maribel H-R, Enrique J-F, et al. Anti-inflammatory activity of coumarins isolated from Tagetes lucida Cav. Nat Prod Res 2020;34:3244–8.
  • Liang H, Shi Y, Zeng K, et al. Coumarin derivatives from the leaves and twigs of Murraya exotica L. and their anti-inflammatory activities. Phytochemistry 2020;177:112416.
  • Wang T, Peng T, Wen X, et al. Design, synthesis and evaluation of 3-substituted coumarin derivatives as anti-inflammatory agents. Chem Pharm Bull 2020;68:443–01085.
  • Parvin K, Hasanuzzaman M, Mohsin S, et al. Coumarin improves tomato plant tolerance to salinity by enhancing antioxidant defence, glyoxalase system and ion homeostasis. Plant Biol 2021;23:181–92.
  • Sanches K, Dias RVR, da Silva PH, et al. Grb2 dimer interacts with Coumarin through SH2 domains: a combined experimental and molecular modeling study. Heliyon 2019;5:e02869.
  • Li W-B, Qiao X-P, Wang Z-X, et al. Synthesis and antioxidant activity of conjugates of hydroxytyrosol and coumarin. Bioorg Chem 2020;105:104427.
  • Ozalp L, Danış Ö, Yuce‐Dursun B, et al. Investigation of HMG‐CoA reductase inhibitory and antioxidant effects of various hydroxycoumarin derivatives. Archiv Der Pharmazie 2020;353:1900378.
  • Konkoľová E, Hudáčová M, Hamuľaková S, et al. Tacrine-coumarin derivatives as topoisomerase inhibitors with antitumor effects on A549 human lung carcinoma cancer cell lines. Molecules 2021;26:1133.
  • Zhang J, Tan Y, Li G, et al. Coumarin sulfonamides and amides derivatives: design, synthesis, and antitumor activity in vitro. Molecules 2021;26:786.
  • Mohammed FZ, Rizzk YW, Abdelhamid MS, El-Deen IM. In vivo biological evaluation of ethyl 4-(7-hydroxy-4-methyl-2-oxoquinolin-1-ylamino)-coumarin-3-carboxylate as an antitumor agent. Anti-Cancer Agents Med Chem 2020;20:2246–66.
  • Shahzadi I, Ali Z, Baek SH, et al. Assessment of the antitumor potential of umbelliprenin, a naturally occurring sesquiterpene coumarin. Biomedicines 2020;8:126.
  • Shan L-P, Zhou Y, Yan M-C, et al. A novel antiviral coumarin derivative as a potential agent against WSSV infection in shrimp seedling culture. Virus Research 2021;297:198387.
  • Chidambaram S, El-Sheikh MA, Alfarhan AH, et al. Synthesis of novel coumarin analogues: investigation of molecular docking interaction of SARS-CoV-2 proteins with natural and synthetic coumarin analogues and their pharmacokinetics studies. Saudi J Biol Sci 2021;28:1100–8.
  • Özdemir M, Köksoy B, Ceyhan D, et al. Design and in silico study of the novel coumarin derivatives against SARS-CoV-2 main enzymes. J Biomol Struct Dyn 2020;1–16. https://doi.org/10.1080/07391102.2020.1863263
  • Liu G-L, Liu L, Shan L-P. Evaluation on the antiviral effect of a hydroxycoumarin against infectious hematopoietic necrosis virus infection in vitro and in vivo. Fish Shellfish Immunol 2020;102:389–99.
  • Francisco CS, Javarini CL, de S Barcelos I, et al. Synthesis of coumarin derivatives as versatile scaffolds for GSK-3β enzyme inhibition. Curr Top Med Chem 2020;20:153–60.
  • Xu X-T, Deng X-Y, Chen J, et al. Synthesis and biological evaluation of coumarin derivatives as α-glucosidase inhibitors. Eur J Med Chem 2020;189:112013.
  • Kurt BZ, Sonmez F, Ozturk D, et al. Synthesis of coumarin-sulfonamide derivatives and determination of their cytotoxicity, carbonic anhydrase inhibitory and molecular docking studies. Eur J Med Chem 2019;183:111702.
  • Supuran CT. Coumarin carbonic anhydrase inhibitors from natural sources. J Enzyme Inhib Med Chem 2020;35:1462–70.
  • Meleddu R, Deplano S, Maccioni E, et al. Selective inhibition of carbonic anhydrase IX and XII by coumarin and psoralen derivatives. J Enzyme Inhib Med Chem 2021;36:685–92.
  • Petreni A, Osman SM, Alasmary FA, et al. Binding site comparison for coumarin inhibitors and amine/amino acid activators of human carbonic anhydrases. Eur J Med Chem 2021;226:113875.
  • Miao Y, Yang J, Yun Y, et al. Synthesis and anti-rheumatoid arthritis activities of 3-(4-aminophenyl)-coumarin derivatives. J Enzyme Inhib Med Chem 2021;36:450–61.
  • Salehian F, Nadri H, Jalili-Baleh L, et al. A review: biologically active 3,4-heterocycle-fused coumarins. Eur J Med Chem 2021;212:113034.
  • Jo YH, Lee S, Yeon SW, et al. Anti-diabetic potential of Masclura tricuspidata leaves: Prenylated isoflavonoids with α-glucosidase inhibitory and anti-glycation activity. Bioorg Chem 2021;114:105098.
  • Hu Y, Wang B, Yang J, et al. Synthesis and biological evaluation of 3-arylcoumarin derivatives as potential anti-diabetic agents. J Enzyme Inhib Med Chem 2019;34:15–30.
  • Hu Y-H, Yang J, Zhang Y, et al. Synthesis and biological evaluation of 3-(4-aminophenyl)-coumarin derivatives as potential anti-Alzheimer's disease agents. J Enzyme Inhib Med Chem 2019;34:1083–92.
  • Sepehri N, Mohammadi‐Khanaposhtani M, Asemanipoor N, et al. Synthesis, characterization, molecular docking, and biological activities of coumarin–1, 2, 3‐triazole‐acetamide hybrid derivatives. Archiv Der Pharmazie 2020;353:2000109.
  • Damrath JG, Creecy A, Wallace JM, Moe SM. The impact of advanced glycation end products on bone properties in chronic kidney disease. Curr Opin Nephrol Hypertens 2021;30:411–7.
  • Babel RA, Dandekar MP. A review on cellular and molecular mechanisms linked to the development of diabetes complications. Curr Diabetes Rev 2021;17:457–73.
  • Ali MY, Jannat S, Rahman MM. Ginsenoside derivatives inhibit advanced glycation end-product formation and glucose-fructose mediated protein glycation in vitro via a specific structure-activity relationship. Bioorg Chem 2021;111:104844.
  • Ni Z, Zhuge Z, Li W, et al. Inhibitory effects of hydroxysafflor yellow A on the formation of advanced glycation endproducts in vitro. Biol Pharm Bull 2012;35:2050–3.
  • Xu X, Zhang M, Fei Z, et al. Calcification of lower extremity arteries is related to the presence of osteoporosis in postmenopausal women with type 2 diabetes mellitus: a cross-sectional observational study. Osteoporosis Int 2021;32:1185–93.
  • Huang T-W, Chen J-Y, Wu Y-L, et al. Alterations of bone markers in obese patients with type 2 diabetes after bariatric surgery: a meta-analysis and systemic review of randomized controlled trials and cohorts. Medicine 2021;100:e26061.
  • Li C, Wang S, Du M, et al. Clinical characteristics and controllable risk factors of osteoporosis in elderly men with diabetes mellitus. Orthopaedic Surg 2021;13:1001–5.
  • Kaur P, Behera BS, Singh S, Munshi A. The pharmacological profile of SGLT2 inhibitors: focus on mechanistic aspects and pharmacogenomics. Eur J Pharmacol 2021;904:174169.
  • Chen K-Y, Wu S-M, Tseng C-H, et al. Combination therapies with thiazolidinediones are associated with a lower risk of acute exacerbations in new-onset COPD patients with advanced diabetic mellitus: a cohort-based case–control study. BMC Pulmonary Med 2021;21:1–9.
  • Lee E-J, Kang M-K, Kim Y-H, et al. Coumarin ameliorates impaired bone turnover by inhibiting the formation of advanced glycation end products in diabetic osteoblasts and osteoclasts. Biomolecules 2020;10:1052.
  • Wei J, Zhang X, Li Y, et al. Novel application of bergapten and quercetin with anti-bacterial, osteogenesis-potentiating, and anti-inflammation tri-effects. Acta Biochimica et Biophysica Sinica 2021;53:683–96.
  • Chen J, Chen Y, Shu A, et al. Radix rehmanniae and corni fructus against diabetic nephropathy via AGE-RAGE signaling pathway. J Diabetes Res 2020;2020:8358102.
  • Subedi L, Lee JH, Gaire BP, Kim SY. Sulforaphane inhibits MGO-AGE-mediated neuroinflammation by suppressing NF-κB, MAPK, and AGE–RAGE signaling pathways in microglial cells. Antioxidants 2020;9:792.
  • Asadipooya K, Uy EM. Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: review of the literature. J Endocrine Soc 2019;3:1799–818.
  • Feng Z, Hou X, Zhu C, et al. Epigallocatechin gallate ameliorates morphological changes of pancreatic islets in diabetic mice and downregulates blood sugar level by inhibiting the accumulation of AGE-RAGE. J Cell Biochem 2019;120:8510–20.
  • Valko M, Jomova K, Rhodes CJ, et al. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2016;90:1–37.
  • Wang J, Zhang W, Li M, Li X. The new coumarin compound Bis 3 ameliorates cognitive disorder and suppresses brain-intestine-liver systematic oxidative stress in high-fat diet mice. Biomed Pharmacother 2021;137:111293.
  • Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal 2017;26:501–18.
  • Ruegsegger GN, Creo AL, Cortes TM, et al. Altered mitochondrial function in insulin-deficient and insulin-resistant states. J Clin Investig 2018;128:3671–81.
  • Onyango AN. Cellular stresses and stress responses in the pathogenesis of insulin resistance. Oxid Med Cell Longev 2018;2018:4321714.
  • Joy MN, Bodke YD, Telkar S. 4-Methyl-7-amino/amido coumarin derivatives as potential antimicrobials and antioxidants. Chem Nat Comp 2020;56:614–20.
  • Nagamallu R, Srinivasan B, Ningappa MB, Kariyappa AK. Synthesis of novel coumarin appended bis(formylpyrazole) derivatives: studies on their antimicrobial and antioxidant activities. Bioorganic Med Chem Lett 2016;26:690–4.
  • Lin Y, Shao Z, Zhao M, et al. PTPN14 deficiency alleviates podocyte injury through suppressing inflammation and fibrosis by targeting TRIP6 in diabetic nephropathy. Biochem Biophys Res Commun 2021;550:62–9.
  • Yao H, Zhang N, Zhang W, et al. Discovery of a coumarin derivative as Nrf2 activator mitigating oxidative stress and fibrosis in mesangial cells under high glucose. Bioorganic Med Chem Lett 2020;30:127490.
  • Kolahdouz M, Jafari F, Falanji F, et al. Clavulanic acid attenuating effect on the diabetic neuropathic pain in rats. Neurochem Res 2021;46:1759–70.
  • Shou S, Wei J, Xiaofen H, et al. Inhibitory effect of low frequency electroacupuncture on the P2 X3 receptor in dorsal root ganglion of rats suffering from type II diabetic neuropathic pain. Acta Laboratorium Animalis Scientia Sinica 2017;25:54–9.
  • Wu B, Sheng X, Xu Z, et al. Osthole relieves diabetics cardiac autonomic neuropathy associated with P2X3 receptor in ratstellate ganglia. Brain Res Bull 2020;157:90–9.
  • Zheng S, Huang H, Li Y, et al. Yin-xing-tong-mai decoction attenuates atherosclerosis via activating PPARγ-LXRα-ABCA1/ABCG1 pathway. Pharmacol Res 2021;169:105639.
  • Wang J, Guo X, Chen C, et al. Gender differences in food allergy depend on the PPAR γ/NF-κB in the intestines of mice. Life Sci 2021;278:119606.
  • Mahmoud AM, Abd El-Ghafar OA, Alzoghaibi MA, Hassanein EH. Agomelatine prevents gentamicin nephrotoxicity by attenuating oxidative stress and TLR-4 signaling, and upregulating PPARγ and SIRT1. Life Sci 2021;278:119600.
  • Moon J-H, Hong J-M, Park S-Y. The antidiabetic drug troglitazone protects against PrP (106‑126)‑induced neurotoxicity via the PPARγ‑autophagy pathway in neuronal cells. Mol Med Rep 2021;23:1–11.
  • El-Bassossy HM, Abo-Warda SM, Fahmy A. Chrysin and luteolin alleviate vascular complications associated with insulin resistance mainly through PPAR-γ activation. Am J Chin Med 2014;42:1153–67.
  • Korecova M, Hladikova M. Treatment of mild and moderate type-2 diabetes: open prospective trial with Hintonia latiflora extract. Eur J Med Res 2014;19:1–6.
  • Guerrero-Analco J, Medina-Campos O, Brindis F, et al. Antidiabetic properties of selected Mexican copalchis of the Rubiaceae family. Phytochemistry 2007;68:2087–95.
  • Guerrero-Analco JA, Hersch-Martinez P, Pedraza-Chaverri J, et al. Antihyperglycemic effect of constituents from Hintonia standleyana in streptozotocin-induced diabetic rats. Planta Medica 2005;71:1099–105.
  • QI G, TU S-z. Synthesis of 3-bromine-4, 7-dimethyl-6-sulfonylurea coumarin derivatives and study of their hypoglycemic activities. West China J Pharm Sci 2009;06:568–70.
  • Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009;32:S62–S67.
  • Konidala SK, Kotra V, Danduga RCSR, Kola PK. Coumarin-chalcone hybrids targeting insulin receptor: design, synthesis, anti-diabetic activity, and molecular docking. Bioorg Chem 2020;104:104207.
  • Kuwata H, Yabe D, Murotani K, et al. Effects of glucagon‐like peptide‐1 receptor agonists on secretions of insulin and glucagon and gastric emptying in Japanese individuals with type 2 diabetes: a prospective, observational study. J Diabetes Investig 2021;12:2162–71.
  • Sharma R, Tiwari S. Renal gluconeogenesis in insulin resistance: a culprit for hyperglycemia in diabetes. World J Diabetes 2021;12:556–68.
  • Yang YX, Li P, Wang P, Zhu BT. Insulin-induced conformational changes in the full-length insulin receptor: structural insights gained from molecular modeling analyses. Acta Biochim Biophys Sinica 2021;53:848–69.