2,609
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Highly potent inhibitors of cathepsin K with a differently positioned cyanohydrazide warhead: structural analysis of binding mode to mature and zymogen-like enzymes

, , , , , , , , , & show all
Pages 515-526 | Received 30 Nov 2021, Accepted 27 Dec 2021, Published online: 11 Feb 2022

References

  • Li H, Xiao Z, Quarles LD, Li W. Osteoporosis: mechanism, molecular target and current status on drug development. Curr Med Chem 2021;28:1489–507.
  • Costa AG, Cusano NE, Silva BC, et al. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nat Rev Rheumatol 2011;7:447–56.
  • Makras P, Delaroudis S, Anastasilakis AD. Novel therapies for osteoporosis. Metabolism 2015;64:1199–214.
  • Kramer L, Turk D, Turk B. The future of cysteine cathepsins in disease management. Trends Pharmacol Sci 2017;38:873–98.
  • Drake MT, Clarke BL, Oursler MJ, Khosla S. Cathepsin K inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned. Endocr Rev 2017;38:325–50.
  • Brömme D, Lecaille F. Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Investig Drugs 2009;18:585–600.
  • Lu J, Wang M, Wang Z, et al. Advances in the discovery of cathepsin K inhibitors on bone resorption. J Enzyme Inhib Med Chem 2018;33:890–904.
  • Dejica VM, Mort JS, Laverty S, et al. Increased type II collagen cleavage by cathepsin K and collagenase activities with aging and osteoarthritis in human articular cartilage. Arthritis Res Ther 2012;14:R113–9.
  • Yasuda Y, Kaleta J, Brömme D. The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug Deliv Rev 2005;57:973–93.
  • Aguda AH, Panwar P, Du X, et al. Structural basis of collagen fiber degradation by cathepsin K. Proc Natl Acad Sci USA 2014;111:17474–9.
  • Novinec M, Lenarčič B. Cathepsin K: a unique collagenolytic cysteine peptidase. Biol Chem 2013;394:1163–79.
  • Novinec M, Kovačič L, Lenarčič B, Baici A. Conformational flexibility and allosteric regulation of cathepsin K. Biochem J 2010;429:379–89.
  • Cherney MM, Lecaille F, Kienitz M, et al. Structure-activity analysis of cathepsin K/chondroitin 4-sulfate interactions. J Biol Chem 2011;286:8988–98.
  • Verbovšek U, Van Noorden CJ, Lah TT. Complexity of cancer protease biology: cathepsin K expression and function in cancer progression. Semin Cancer Biol 2015;35:71–84.
  • Olson OC, Joyce JA. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 2015;15:712–29.
  • Jiang H, Cheng XW, Shi GP, et al. Cathepsin K-mediated Notch1 activation contributes to neovascularization in response to hypoxia. Nat Commun 2014;5:3838.
  • Herroon MK, Rajagurubandara E, Rudy DL, et al. Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene 2013;32:1580–93.
  • Kamolmatyakul S, Chen W, Yang S, et al. IL-1alpha stimulates cathepsin K expression in osteoclasts via the tyrosine kinase-NF-kappaB pathway. J Dent Res 2004;83:791–6.
  • Asagiri M, Hirai T, Kunigami T, et al. Cathepsin K-dependent toll-like receptor 9 signaling revealed in experimental arthritis. Science 2008;319:624–7.
  • Hira VV, Ploegmakers KJ, Grevers F, et al. CD133+ and Nestin + glioma stem-like cells reside around CD31+ arterioles in niches that express SDF-1α, CXCR4, osteopontin and cathepsin K. J Histochem Cytochem 2015; 63: 481–93.
  • Calio A, Brunelli M, Gobbo S, et al. Cathepsin K: a novel diagnostic and predictive biomarker for renal tumors. Cancers 2021;13:2441.
  • Leusink FK, Koudounarakis E, Frank MH, et al. Cathepsin K associates with lymph node metastasis and poor prognosis in oral squamous cell carcinoma. BMC Cancer 2018;18:385.
  • Kos J, Lah TT. Cysteine proteinases and their endogenous inhibitors: target proteins for prognosis, diagnosis and therapy in cancer (review). Oncol Rep 1998;5:1349–410.
  • Lecaille F, Brömme D, Lalmanach G. Biochemical properties and regulation of cathepsin K activity. Biochimie 2008;90:208–26.
  • McQueney MS, Amegadzie BY, D'Alessio K, et al. Autocatalytic activation of human cathepsin K. J Biol Chem 1997;272:13955–60.
  • Linnevers CJ, Mcgrath ME, Armstrong A, et al. Expression of human cathepsin K in Pichia pastoris and preliminary crystallographic studies of an inhibitor complex. Protein Sci 1997;6:919–21.
  • Sivaraman J, Lalumière M, Ménard R, Cygler M. Crystal structure of wild-type human procathepsin K. Protein Sci 1999;8:283–90.
  • LaLonde JM, Zhao B, Janson CA, et al. The crystal structure of human procathepsin K. Biochemistry 1999;38:862–9.
  • Lemaire PA, Huang L, Zhuo Y, et al. Chondroitin sulfate promotes activation of cathepsin K. J Biol Chem 2014;289:21562–72.
  • Löser R, Frizler M, Schilling K, Gütschow M. Azadipeptide nitriles: highly potent and proteolytically stable inhibitors of papain-like cysteine proteases. Angew Chem Int Ed Engl 2008;47:4331–4.
  • Frizler M, Lohr F, Furtmann N, et al. Structural optimization of azadipeptide nitriles strongly increases association rates and allows the development of selective cathepsin inhibitors. J Med Chem 2011;54:396–400.
  • Jílková A, Horn M, Fanfrlík J, et al. Azanitrile inhibitors of the SmCB1 protease target are lethal to Schistosoma mansoni: structural and mechanistic insights into chemotype reactivity. ACS Infect Dis 2021;7:189–201.
  • Yang PY, Wang M, Li L, et al. Design, synthesis and biological evaluation of potent azadipeptide nitrile inhibitors and activity-based probes as promising anti-Trypanosoma brucei agents. Chemistry 2012;18:6528–41.
  • Breidenbach J, Lemke C, Pillaiyar T, et al. Targeting the main protease of SARS-CoV-2: from the establishment of high throughput screening to the design of tailored inhibitors. Angew Chem Int Ed Engl 2021;60:10423–9.
  • Chingle R, Proulx C, Lubell WD. Azapeptide synthesis methods for expanding side-chain diversity for biomedical applications. Acc Chem Res 2017;50:1541–56.
  • Proulx C, Sabatino D, Hopewell R, et al. Azapeptides and their therapeutic potential. Future Med Chem 2011;3:1139–64.
  • Verhelst SH, Witte MD, Arastu-Kapur S, et al. Novel aza peptide inhibitors and active-site probes of papain-family cysteine proteases. ChemBioChem 2006;7:943–50.
  • Sexton KB, Kato D, Berger AB, et al. Specificity of aza-peptide electrophile activity-based probes of caspases. Cell Death Differ 2007;14:727–32.
  • Schmitz J, Beckmann AM, Dudic A, et al. 3-Cyano-3-aza-β-amino acid derivatives as inhibitors of human cysteine cathepsins. ACS Med Chem Lett 2014;5:1076–81.
  • Lemke C, Benýšek J, Brajtenbach D, et al. An activity-based probe for cathepsin K imaging with excellent potency and selectivity. J Med Chem 2021;64:13793–806.
  • Jílková A, Horn M, Řezáčová P, et al. Activation route of the Schistosoma mansoni cathepsin B1 drug target: structural map with a glycosaminoglycan switch. Structure 2014;22:1786–98.
  • Horn M, Jílková A, Vondrášek J, et al. Mapping the pro-peptide of the Schistosoma mansoni cathepsin B1 drug target: modulation of inhibition by heparin and design of mimetic inhibitors. ACS Chem Biol 2011;6:609–17.
  • Mueller U, Förster R, Hellmig M, et al. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current status and perspectives. Eur Phys J Plus 2015;130:141.
  • Kabsch W. Xds. Acta Crystallogr D Biol Crystallogr 2010;66:125–32.
  • Vagin A, Teplyakov A. An approach to multi-copy search in molecular replacement. Acta Crystallogr D Biol Crystallogr 2000;56:1622–4.
  • Winn MD, Ballard CC, Cowtan KD, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 2011;67:235–42.
  • Cowtan K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 2006;62:1002–11.
  • Long F, Nicholls RA, Emsley P, et al. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr D Struct Biol 2017;73:112–22.
  • Davis IW, Leaver-Fay A, Chen VB, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007;35:W375–83.
  • Salentin S, Schreiber S, Haupt VJ, et al. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 2015;43:W443–7.
  • Case DA, Babin V, Berryman JT, et al. AMBER 14. San Francisco (USA): University of California San Francisco; 2014.
  • Stewart JJ. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 2007;13:1173–213.
  • Řezáč J, Hobza P. Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J Chem Theory Comput 2012;8:141–51.
  • Klamt A, Schuurmann G. Cosmo - a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perk T 2 1993;5:799–805.
  • Kříž K, Řezáč J. Reparametrization of the COSMO solvent model for semiempirical methods PM6 and PM7. J Chem Inf Model 2019;59:229–35.
  • Řezáč J. Cuby: an integrative framework for computational chemistry. J Comput Chem 2016;37:1230–7.
  • Stewart JJP. Optimization of parameters for semiempirical methods IV: extension of MNDO, AM1, and PM3 to more main group elements. J Mol Model 2004;10:155–64.
  • Kuzmic P, Sideris S, Cregar LM, et al. High-throughput screening of enzyme inhibitors: automatic determination of tight-binding inhibition constants. Anal Biochem 2000;281:62–7.
  • Horn M, Nussbaumerová M, Šanda M, et al. Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem Biol 2009;16:1053–63.
  • Barrett AJ, Kembhavi AA, Brown MA, et al. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J 1982;201:189–98.
  • Billington CJ, Mason P, Magny MC, Mort JS. The slow-binding inhibition of cathepsin K by its propeptide. Biochem Biophys Res Commun 2000;276:924–9.
  • Husmann K, Muff R, Bolander ME, et al. Cathepsins and osteosarcoma: expression analysis identifies cathepsin K as an indicator of metastasis. Mol Carcinog 2008;47:66–73.
  • Ottersbach PA, Schnakenburg G, Gütschow M. Induction of chirality: experimental evidence of atropisomerism in azapeptides. Chem Commun 2012;48:5772–4.
  • Ottersbach PA, Schnakenburg G, Gütschow M. Atropisomerism in azadipeptides: evaluation of N1-methylation and thioamide introduction. Tetrahedron Lett 2015;56:4889–91.
  • Chia-en AC, Chen W, Gilson MK. Ligand configurational entropy and protein binding. Proc Natl Acad Sci USA 2007;104:1534–9.