2,818
Views
7
CrossRef citations to date
0
Altmetric
Research Papers

Positional scanning of natural product hispidol’s ring-B: discovery of highly selective human monoamine oxidase-B inhibitor analogues downregulating neuroinflammation for management of neurodegenerative diseases

ORCID Icon, , , , , , , , , , & ORCID Icon show all
Pages 768-780 | Received 19 Oct 2021, Accepted 27 Jan 2022, Published online: 23 Feb 2022

References

  • ASA. Alzheimer’s disease facts and figures. Alzheimer’s Dement 2020;16:391–460.
  • Lüscher Dias T, Schuch V, Beltrão-Braga PCB, et al. Drug repositioning for psychiatric and neurological disorders through a network medicine approach. Transl Psychiatry 2020;10:141.
  • Yang W, Hamilton JL, Kopil C, et al. Current and projected future economic burden of Parkinson’s disease in the US. NPJ Parkinsons Dis 2020;6:15.
  • Farag AK, Hassan AHE, Jeong H, et al. First-in-class DAPK1/CSF1R dual inhibitors: Discovery of 3,5-dimethoxy-N-(4-(4-methoxyphenoxy)-2-((6-morpholinopyridin-3-yl)amino)pyrimidin-5-yl)benzamide as a potential anti-tauopathies agent. Eur J Med Chem 2019;162:161–75.
  • Gilhus NE, Deuschl G. Neuroinflammation - a common thread in neurological disorders. Nat Rev Neurol 2019;15:429–30.
  • Brambilla R. Neuroinflammation, the thread connecting neurological disease: cluster: “neuroinflammatory mechanisms in neurodegenerative disorders.” Acta Neuropathol 2019;137:689–91.
  • Skaper SD, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci 2018;12:72.
  • Thibaut F. Psychiatric disorders: neurodevelopmental disorders, neurodegenerative disorders, or both? Dialogues Clin Neurosci 2018;20:251–2.
  • Xie A, Gao J, Xu L, Meng D. Shared mechanisms of neurodegeneration in Alzheimer’s disease and Parkinson’s disease. Biomed Res Int 2014;2014:648740.
  • Morgese MG, Trabace L. Monoaminergic System Modulation in Depression and Alzheimer's Disease: A New Standpoint? Front Pharmacol 2019;10:483–483.
  • Šimić G, Babić Leko M, Wray S, et al. Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol 2017;151:101–38.
  • Fišar Z. Drugs related to monoamine oxidase activity. Prog Neuropsychopharmacol Biol Psychiatry 2016;69:112–24.
  • Kumar MJ, Nicholls DG, Andersen JK. Oxidative alpha-ketoglutarate dehydrogenase inhibition via subtle elevations in monoamine oxidase B levels results in loss of spare respiratory capacity: implications for Parkinson's disease. J Biol Chem 2003;278:46432–9.
  • Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 2013;3:461–91.
  • Ramsay RR, Tipton KF. Assessment of enzyme inhibition: a review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules 2017;22:1192.
  • Park JH, Ju YH, Choi JW, et al. Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer’s disease. Sci Adv 2019;5:eaav0316
  • Dorothée G. Neuroinflammation in neurodegeneration: role in pathophysiology, therapeutic opportunities and clinical perspectives. J Neural Transm (Vienna) 2018;125:749–50.
  • Kim N, Yoo HS, Ju YJ, et al. Synthetic 3',4'-dihydroxyflavone exerts anti-neuroinflammatory effects in BV2 microglia and a mouse model. Biomol Ther (Seoul) 2018;26:210–17.
  • Yan A, Liu Z, Song L, et al. Idebenone alleviates neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and MPTP-induced Parkinson’s disease mice. Front Cell Neurosci 2018;12:529–9.
  • R, Gordon TM, Woodruff Chapter 3 - Neuroinflammation as a therapeutic target in neurodegenerative diseases. In: Baekelandt V, Lobbestael E, eds. Disease-modifying targets in neurodegenerative disorders. Cambridge (MA): Academic Press; 2017:49–80.
  • Dunn GA, Loftis JM, Sullivan EL. Neuroinflammation in psychiatric disorders: an introductory primer. Pharmacol Biochem Behav 2020;196:172981.
  • Almeida PGC, Nani JV, Oses JP, et al. Neuroinflammation and glial cell activation in mental disorders. Brain Behav Immun 2020;2:100034.
  • Mattei D, Notter T. Basic concept of microglia biology and neuroinflammation in relation to psychiatry. Curr Top Behav Neurosci 2020;44:9–34.
  • Radtke FA, Chapman G, Hall J, Syed YA. Modulating neuroinflammation to treat neuropsychiatric disorders. Biomed Res Int 2017;2017:5071786.
  • Echeverria V, Grizzell JA, Barreto GE. Neuroinflammation: a therapeutic target of cotinine for the treatment of psychiatric disorders? Curr Pharm Des 2016;22:1324–33.
  • Gao HM, Hong JS. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 2008;29:357–65.
  • Wattenberg MM, Beatty GL. Overcoming immunotherapeutic resistance by targeting the cancer inflammation cycle. Semin Cancer Biol 2020;65:38–50.
  • Savelieff MG, Nam G, Kang J, et al. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem Rev 2019;119:1221–322.
  • Van der Schyf CJ, Geldenhuys WJ, Youdim MB. Multifunctional drugs with different CNS targets for neuropsychiatric disorders. J Neurochem 2006;99:1033–48.
  • Wong EH, Yocca F, Smith MA, Lee CM. Challenges and opportunities for drug discovery in psychiatric disorders: the drug hunters’ perspective. Int J Neuropsychopharmacol 2010;13:1269–84.
  • Milelli A, Turrini E, Catanzaro E, et al. Perspectives in designing multifunctional molecules in antipsychotic drug discovery, drug. Drug Dev Res 2016;77:437–43.
  • Alam MM, Hassan AHE, Kwon YH, et al. Design, synthesis and evaluation of alkylphosphocholine-gefitinib conjugates as multitarget anticancer agents. Arch Pharm Res 2018;41:35–45.
  • Alam MM, Hassan AHE, Lee KW, et al. Design, synthesis and cytotoxicity of chimeric erlotinib-alkylphospholipid hybrids. Bioorg Chem 2019;84:51–62.
  • Würth R, Thellung S, Bajetto A, et al. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discov Today 2016;21:190–9.
  • Crisan L, Istrate D, Bora A, Pacureanu L. Virtual screening and drug repurposing experiments to identify potential novel selective MAO-B inhibitors for Parkinson’s disease treatment. Mol Divers 2021;25:1775–94.
  • Hassan AHE, Yoo SY, Lee KW, et al. Repurposing mosloflavone/5,6,7-trimethoxyflavone-resveratrol hybrids: discovery of novel p38-α MAPK inhibitors as potent interceptors of macrophage-dependent production of proinflammatory mediators. Eur J Med Chem 2019;180:253–67.
  • Farag AK, Hassan AHE, Chung KS, et al. Diarylurea derivatives comprising 2,4-diarylpyrimidines: discovery of novel potential anticancer agents via combined failed-ligands repurposing and molecular hybridization approaches. Bioorg Chem 2020;103:104121.
  • Farag AK, Hassan AHE, Ahn BS, et al. Reprofiling of pyrimidine-based DAPK1/CSF1R dual inhibitors: identification of 2,5-diamino-4-pyrimidinol derivatives as novel potential anticancer lead compounds. J Enzyme Inhib Med Chem 2020;35:311–24.
  • Carradori S, D’Ascenzio M, Chimenti P, et al. Selective MAO-B inhibitors: a lesson from natural products. Mol Divers 2014;18:219–43.
  • Hassan AHE, Choi E, Yoon YM, et al. Natural products hybrids: 3,5,4'-Trimethoxystilbene-5,6,7-trimethoxyflavone chimeric analogs as potential cytotoxic agents against diverse human cancer cells. Eur J Med Chem 2019;161:559–80.
  • Shen B. A new golden age of natural products drug discovery. Cell 2015;163:1297–300.
  • Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015;14:111–29.
  • Baek SC, Lee HW, Ryu HW, et al. Selective inhibition of monoamine oxidase A by hispidol. Bioorg Med Chem Lett 2018;28:584–88.
  • Oh JM, Lee HS, Baek SC, et al. Antidepressant-like activities of hispidol and decursin in mice and analysis of neurotransmitter monoamines. Neurochem Res 2020;45:1930–40.
  • Geldenhuys WJ, Funk MO, Van der Schyf CJ, Carroll RT. A scaffold hopping approach to identify novel monoamine oxidase B inhibitors. Bioorg Med Chem Lett 2012;22:1380–3.
  • Morales-Camilo N, Salas CO, Sanhueza C, et al. Synthesis, biological evaluation, and molecular simulation of chalcones and aurones as selective MAO-B inhibitors. Chem Biol Drug Des 2015;85:685–95.
  • Badavath VN, Nath C, Ganta NM, et al. Design, synthesis and MAO inhibitory activity of 2-(arylmethylidene)-2,3-dihydro-1-benzofuran-3-one derivatives. Chin Chem Lett 2017;28:1528–32.
  • Pennington LD, Aquila BM, Choi Y, et al. Positional analogue scanning: an effective strategy for multiparameter optimization in drug design. J Med Chem 2020;63:8956–76.
  • Shin SY, Shin MC, Shin JS, et al. Synthesis of aurones and their inhibitory effects on nitric oxide and PGE2 productions in LPS-induced RAW 264.7 cells. Bioorg Med Chem Lett 2011;21:4520–3.
  • Seo JM, Hassan AHE, Lee YS. An expeditious entry to rare tetrahydroimidazo[1,5-c]pyrrolo[1,2-a]pyrimidin-7(8H)-ones: a single-step gateway synthesis of glochidine congeners. Tetrahedron 2019;75:130760.
  • Gaich T, Baran PS. Aiming for the Ideal Synthesis. J Org Chem 2010;75:4657–73.
  • Jo H, Hassan AHE, Jung SY, et al. Construction of 8-Azabicyclo[3.2.1]octanes via sequential DDQ-mediated oxidative Mannich reactions of N-Aryl pyrrolidines. Org Lett 2018;20:1175–8.
  • Łączkowski KZ, Pakulski MM, Krzemiński MP, et al. Asymmetric synthesis of N-substituted N-hydroxyureas. Tetrahedron Asymmetr 2008;19:788–95.
  • Lee YH, Shin MC, Yun YD, et al. Synthesis of aminoalkyl-substituted aurone derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem 2015;23:231–40.
  • Siah M, Farzaei MH, Ashrafi-Kooshk MR, et al. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: an in vitro study. Bioorg Chem 2016;64:74–84.
  • Liew KF, Chan KL, Lee CY. Blood-brain barrier permeable anticholinesterase aurones: synthesis, structure-activity relationship, and drug-like properties. Eur J Med Chem 2015;94:195–210.
  • Cheng H, Zhang L, Liu Y, et al. Design, synthesis and discovery of 5-hydroxyaurone derivatives as growth inhibitors against HUVEC and some cancer cell lines. Eur J Med Chem 2010;45:5950–7.
  • Lee CY, Chew EH, Go ML. Functionalized aurones as inducers of NAD(P)H:quinone oxidoreductase 1 that activate AhR/XRE and Nrf2/ARE signaling pathways: Synthesis, evaluation and SAR. Eur J Med Chem 2010;45:2957–71.
  • Choi JW, Jang BK, Cho NC, et al. Synthesis of a series of unsaturated ketone derivatives as selective and reversible monoamine oxidase inhibitors. Bioorg Med Chem 2015;23:6486–96.
  • Guglielmi P, Secci D, Petzer A, et al. Benzo[b]tiophen-3-ol derivatives as effective inhibitors of human monoamine oxidase: design, synthesis, and biological activity. J Enzyme Inhib Med Chem 2019;34:1511–25.
  • York EM, Bernier L-P, MacVicar BA. Microglial modulation of neuronal activity in the healthy brain. Dev Neurobiol 2018;78:593–603.
  • Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 2018;18:225–42.
  • Angelova DM, Brown DR. Microglia and the aging brain: are senescent microglia the key to neurodegeneration? J Neurochem 2019;151:676–88.
  • Henn A, Lund S, Hedtjärn M, et al. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. Altex 2009;26:83–94.
  • Adachi K, Kakigawa K, Tazuke Y, Tsukada Y. Development of an automatic assay method for sulfated bile acids in urine using water-soluble tetrazolium WST-1. Japanese J Clin Chem 1997;26:95–100.
  • Yuste JE, Tarragon E, Campuzano CM, Ros-Bernal F. Implications of glial nitric oxide in neurodegenerative diseases. Front Cell Neurosci 2015;9:322.
  • Ghasemi M, Fatemi A. Pathologic role of glial nitric oxide in adult and pediatric neuroinflammatory diseases. Neurosci Biobehav Rev 2014;45:168–82.
  • Anna LB, Klaus LL. Cyclooxygenase and Neuroinflammation in Parkinsons Disease Neurodegeneration. Curr Neuropharmacol 2010;8:62–8.
  • Binda C, Newton-Vinson P, Hubalek F, et al. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol 2002;9:22–6.
  • Gaweska H, Fitzpatrick PF. Structures and mechanism of the monoamine oxidase family. Biomol Concepts 2011;2:365–77.
  • Son SY, Ma J, Kondou Y, et al. Structure of human monoamine oxidase A at 2.2-A resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci USA 2008; 105: 5739–44.
  • Khattab SN, Haiba NS, Asal AM, et al. Synthesis and evaluation of quinazoline amino acid derivatives as mono amine oxidase (MAO) inhibitors. Bioorg Med Chem 2015;23:3574–85.