2,948
Views
4
CrossRef citations to date
0
Altmetric
Review

Antibacterial action mechanisms and mode of trypsin inhibitors: a systematic review

, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 749-759 | Received 10 Nov 2021, Accepted 03 Feb 2022, Published online: 16 Feb 2022

References

  • Nguyen NH, Nguyen CT. Pharmacological effects of ginseng on infectious diseases. Inflammopharmacol 2019;27:871–83.
  • Assana E, Lightowlers MW, Zoli AP, et al. Taenia solium taeniosis/cysticercosis in Africa: risk factors, epidemiology and prospects for control using vaccination. Vet Parasitol 2013;195:14–23.
  • Casanova JL, Laurent A. Lethal infectious diseases as inborn errors of immunity: toward a synthesis of the germ and genetic theories. Annu Rev Pathol Mech Dis 2020;16:1–28.
  • Robertson FC, Lepard JR, Mekary RA, et al. Epidemiology of central nervous system infectious diseases: a meta-analysis and systematic review with implications for neurosurgeons worldwide. J Neurosurg 2019;130:1107–26.
  • Wißmann JE, Kirchhoff L, Brüggemann Y, et al. Persistence of pathogens on inanimate surfaces: a narrative review. Microorganisms 2021;9:343.
  • Miller JM, Binnicker MJ, Campbell S, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases. Clin Infect Dis 2018;67:1–94.
  • Brasil. Ministério da Saúde. 2021. Available from: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z-1/d/doencas-transmitidas-por-alimentos [last acessed 11 Jan 2021].
  • Manohar P, Loh B, Nachimuthu R, et al. Secondary bacterial infections in patients with viral pneumonia. Front Med (Lausanne) 2020;7:420.
  • Chattu VK, Yaya S. Emerging infectious diseases and outbreaks: implications for women's reproductive health and rights in resource-poor settings. Reprod Health 2020;17:43.
  • Koulenti D, Xu E, Song A, et al. Emerging treatment options for infections by multidrug-resistant gram-positive microorganisms. Microorganisms 2020;8:191.
  • The World Health Organization. 2021. http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death [last accessed 4 Jul 2021].
  • Michael CA, Dale DH, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Fron Public Health 2014;2:145v.
  • Oliveira CFR, Oliveira CT, Taveira GB, et al. Characterization of a Kunitz trypsin inhibitor from Enterolobium timbouva with activity against Candida species. Int J Biol 2018;119:645–53.
  • Biji KB, Ravishankar CN, Mohan CO, Gopal TKS. Smart packaging systems for food applications: a review. J Food Sci Technol 2015;52:6125–35.
  • Medeiros AF, Costa IS, Carvalho FMC, et al. Biochemical characterisation of a Kunitz-type inhibitor from Tamarindus indica L. seeds and its efficacy in reducing plasma leptin in an experimental model of obesity. J Enzyme Inhib Med Chem 2018;33:334–48.
  • Carvalho FC, Lima VCO, Costa IS, et al. Anti-TNF-α agent tamarind Kunitz trypsin inhibitor improves lipid profile of Wistar rats presenting dyslipidemia and diet-induced obesity regardless of PPAR-γ induction. Nutrients 2019;11:512.
  • Lima VCO, Piuvezam G, Maciel BLL, Morais AHA. Trypsin inhibitors: promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders. J Enzyme Inhib Med Chem 2019;34:405–19.
  • Medeiros AF, Souza BBP, Coutinho LP, et al. Structural insights and molecular dynamics into the inhibitory mechanism of a Kunitz-type trypsin inhibitor from Tamarindus indica L. J Enzyme Inhib Med Chem 2021;36:480–90.
  • Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009;6:e1000100–28.
  • Nascimento AMS, Matias LLR, Segundo VHO, et al. Antibacterial mechanism of trypsin inhibitors: a protocol for systematic review and meta-analysis. Med Case Rep Stud Protocol 2021;211:e0172.
  • Machado OVO, et al. Antimicrobianos: revisão geral para graduandos e generalistas [recurso eletrônico]. Fortaleza: EdUnichristus; 2019. Available from: https://unichristus.edu.br/wpcontent/uploads/2020/10/AntimicrobianosRevis%C3%A3o-Geral-para-Graduandos-e-Generalistas.pdf. [last accessed 20 Sep 2021].
  • Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan-a web and mobile app for systematic reviews. Syst Rev 2016;5:1–0.
  • U.S. Department of Health and Human Services. OHAT systematic review. 2020. Available from: https://ntp.niehs.nih.gov/pubhealth/hat/review/index-2.html [last accessed 30 Dec 2020].
  • Malik U, Silva ON, Fensterseifer ICM, et al. In vivo efficacy of anuran trypsin inhibitory peptides against staphylococcal skin infection and the impact of peptide cyclization. Antimicrob Agents Chemother 2015;59:2113–21.
  • Rodrigues MS, Oliveira CFR, Almeida LHO, et al. Adevonin, a novel synthetic antimicrobial peptide designed from the Adenanthera pavonina trypsin inhibitor (ApTI) sequence. Pathog Glob Health 2018;112:438–47.
  • Martins TF, Vasconcelos IM, Silva RGG, et al. A Bowman-Birk inhibitor from the seeds of Luetzelburgia auriculata inhibits Staphylococcus aureus growth by promoting severe cell membrane damage. J Nat Prod 2018;81:1497–507.
  • Almeida LHDO, Oliveira CFRD, Rodrigues MDS, et al. Adepamycin: design, synthesis and biological properties of a new peptide with antimicrobial properties. Arch Biochem Biophys 2020;691:108487.
  • Yusoff MJ, Alias Z, Simarani K. Trypsin inhibitor isolated from Streptomyces misionensis UMS1 has anti-bacterial activities and activates α-amylase. Appl Biochem Microbiol 2016;52:256–62.
  • Wang C, Shao C, Fang Y, et al. Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides. Acta Biomaterial 2021;0:0.
  • Costa HPS, Oliveira JTA, Sousa DOB, et al. JcTI-I: a novel trypsin inhibitor from Jatropha curcas seed cake with potential for bacterial infection treatment. Front Microbiol 2014;5:5.
  • Szałapata K, Osińska-Jaroszuk M, Kapral-Piotrowska J, et al. Serine protease inhibitors new molecules for modification of polymeric biomaterials. Biomolecules 2020;10:82.
  • Chen X, Chen D, Huang L, et al. Identification and target-modification of SL-BBI: a novel bowman–birk type trypsin inhibitor from Sylvirana latouchii. Biomolecules 2020;10:1254.
  • Liu Y, Cui Z, Shi G, et al. PtPLC, a pacifastin-related inhibitor involved in antibacterial defense and prophenoloxidase cascade of the swimming crab Portunus trituberculatus. Fish Shellfish Immunol 2015;43:36–42.
  • Yu H, Wang C, Feng L, et al. Cathelicidin-trypsin inhibitor loop conjugate represents a promising antibiotic candidate with protease stability. Sci Rep 2017;7:2600.
  • Li J, Zhang C, Xu X, et al. Trypsin inhibitory loop is an excellent lead structure to design serine protease inhibitors and antimicrobial peptides. FASEB J 2007;21:2466–73.
  • Dabhade AR, Mokashe NU, Patil UK. Purification, characterization, and antimicrobial activity of nontoxic trypsin inhibitor from Albizia amara Boiv. Proc Biochem 2016;51:659–74.
  • Bacha AB, Jemel I, Moubayed NMS, Abdelmalek IB. Purification and characterization of a newly serine protease inhibitor from Rhamnus frangula with potential for use as therapeutic drug. 3 Biotech 2017;7:148.
  • Bezerra CS, Oliveira CFR, Machado OLT, et al. Exploiting the biological roles of the trypsin inhibitor from Inga vera seeds: a multifunctional Kunitz inhibitor. Proc Biochem 2016;51:792–803.
  • Mehmood S, Imran M, Ali A, et al. Model prediction of a Kunitz-type trypsin inhibitor protein from seeds of Acacia nilotica L. with strong antimicrobial and insecticidal activity. Turk J Biol 2020;44:188–200.
  • Kaner Z, Engelman R, Schuster R, et al. S-nitrosylation of α1-antitrypsin triggers macrophages toward inflammatory phenotype and enhances intra-cellular bacteria elimination. Front Immunol 2019;10:590.
  • Hooijmans CR, Rovers MM, de Vries RB, et al. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol 2014;14:43.
  • Muhlhausler BS, Bloomfield FH, Gillman MW. Whole animal experiments should be more like human randomized controlled trials. PLoS Biol 2013;11:e1001481–10.1371.
  • Marr AK, Gooderham WJ, Hancock RE. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 2006;6:468–72.
  • Brunton LL, Chabner BA, Knollmann BC, As Bases farmacológicas da terapêutica de Goodman e Gilman. 12. ed. New York (NY): Artmed/McGraw Hill; 2012.
  • Wang Y, Yang Y, Shi Y, et al. Antibiotic-free antibacterial strategies enabled by. Nanomater Prog Perspect 2020;32:1904106.
  • Vadillo-Rodríguez V, Cavagnola MA, Pérez-Giraldo C, Fernández-Calderón MC. A physico-chemical study of the interaction of ethanolic extracts of propolis with bacterial cells. Colloid Surf B Biointerfaces 2021;200:111571.
  • Liu WL, Zou MZ, Qin SY, et al. Recent advances of cell membrane-coated nanomaterials for biomedical applications. Adv Funct Mater 2020;30:2003559.
  • Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochim Biophys Acta 2016;1858:936–46.
  • Lee TH, Hall KN, Aguilar MI. Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Curr Top Med Chem 2016;16:25–39.
  • Bernatová S, Samek O, Pilát Z, et al. Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecules 2013;18:13188–99.
  • Meng S, Xu H, Wang F. Research advances of antimicrobial peptides and applications in food industry and agriculture. Currt Protein Peptide Sci 2010;11:264–73.
  • Anumudu C, Hart A, Miri T, Onyeaka H. Recent advances in the application of the antimicrobial peptide nisin in the inactivation of spore-forming bacteria in foods. Molecules 2021;26:5552.