2,011
Views
5
CrossRef citations to date
0
Altmetric
Brief Report

Thio- and selenosemicarbazones as antiprotozoal agents against Trypanosoma cruzi and Trichomonas vaginalis

, , , , , , , , , , , , & show all
Pages 781-791 | Received 19 Dec 2021, Accepted 07 Feb 2022, Published online: 23 Feb 2022

References

  • 1. Sutrave S, Richter MH. The Truman Show for protozoan parasites: a review of in vitro cultivation platforms. PLoS Negl Trop Dis 2021;15:e0009668.
  • Varikuti S, Jha BK, Volpedo G, et al. Host-directed drug therapies for neglected tropical diseases caused by protozoan parasites. Front Microbiol 2018;9:2655.
  • Molyneux DH, Savioli L, Engels D. Neglected tropical diseases: progress towards addressing the chronic pandemic. Lancet 2017;389:312–25.
  • Ribeiro V, Dia N, Paiva T, et al. Current trends in the pharmacological management of Chagas disease. Int J Parasitol Drugs Drug Resist 2020;12:7–17.
  • Beatriz Palatnik-de-Sousa CN. The delay in the licensing of protozoal vaccines: a comparative history. Front Immunol 2020;11.
  • Capela R, Moreira R, Lopes F. An overview of drug resistance in protozoal diseases. Int J Mol Sci 2019;20:5748.
  • Castro JA, Montalto de Mecca M, Bartel LC. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum Exp Toxicol 2006;25:471–9.
  • Alonso-Padilla J, Cortés-Serra N, Pinazo MJ, et al. Strategies to enhance access to diagnosis and treatment for Chagas disease patients in Latin America. Expert Rev Anti Infect Ther 2019;17:145–57.
  • Kaiser M, Mäser P, Tadoori LP, et al. Antiprotozoal activity profiling of approved drugs: a starting point toward drug repositioning. PloS One 2015;10:e0135556.
  • Patel OPS, Jesumoroti OJ, Legoabe LJ, Beteck RM. Metronidazole-conjugates: a comprehensive review of recent developments towards synthesis and medicinal perspective. Eur J Med Chem 2021;210:112994.
  • Nocentini A, Cadoni R, Dumy P, et al. Carbonic anhydrases from Trypanosoma cruzi and Leishmania donovani chagasi are inhibited by benzoxaboroles. J Enzyme Inhib Med Chem 2018;33:286–9.
  • WHO. https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(ntiprot-trypanosomiasis) (last accessed 18th December 2021).
  • Choudhury SD. Nano-medicines a hope for Chagas disease! Front Mol Biosci 2021;8:655435.
  • Schmunis GA, Yadon ZE. Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 2010;115:14–21.
  • Brindha J, Balamurali MM, Kaushik C. An overview on the therapeutics of neglected infectious diseases—Leishmaniasis and Chagas diseases. Front Chem 2021;9:622286.
  • Teixeira DE, Benchimol M, Crepaldi PH, de Souza W. Interactive multimedia to teach the life cycle of Trypanosoma cruzi, the causative agent of Chagas disease. PloS Negl Trop Dis 2012;6:e1749.
  • García-Huertas P, Cardona-Castro N. Advances in the treatment of Chagas disease: promising new drugs, plants and targets. Biomed Pharmacother 2021;142:112020.
  • Salas-Sarduy E, Landaburu LU, Karpiak J, et al. Novel scaffolds for inhibition of Cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Sci Rep 2017;7:12073.
  • Leite ACL, de Lima RS, Moreira DRM, et al. Synthesis, docking, and in vitro activity of thiosemicarbazones, aminoacyl-thiosemicarbazides and acyl-thiazolidones against Trypanosoma cruzi. Bioorg Med Chem 2006;14:3749–57.
  • Caputto ME, Fabian LE, Benítez D, et al. Thiosemicarbazones derived from 1-indanones as new anti-Trypanosoma cruzi agents. Bioorg Med Chem 2011;19:6818–26.
  • Moreno-Rodríguez A, Salazar-Schettino PM, Bautista JL, et al. In vitro antiparasitic activity of new thiosemicarbazones in strains of Trypanosoma cruzi. Eur J Med Chem 2014;87:23–9.
  • Pizzo C, Faral-Tello P, Salinas G, et al. Selenosemicarbazones as potent cruzipain inhibitors and their antiparasitic properties against Trypanosoma cruzi. MedChemComm 2012;3:362–8.
  • Rowley J, Vander Hoorn S, Korenromp E, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Org 2019;97:548–562P.
  • Mielczarek E, Blaszkowska J. Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure. Infection 2016;44:447–58.
  • Menezes CB, Piccoli Frasson A, Tasca T. Trichomoniasis – Are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microb Cell 2016;3:404–17.
  • Stark JR, Judson G, Alderete JF, et al. Prospective study of Trichomonas vaginalis infection and prostate cancer incidence and mortality: physicians’ health study. J Natl Cancer Inst 2009;101:1406–11.
  • Kissinger P, Amedee A, Clark RA, et al. Trichomonas vaginalis treatment reduces vaginal HIV-1 shedding. Sex Transm Dis 2009;36:11–6.
  • Kissinger P. Trichomonas vaginalis: a review of epidemiologic, clinical and treatment issues. BMC Infect Dis 2015;15:305–13.
  • Cudmore SL, Delgaty KL, Hayward-McClelland SF, et al. Treatment of infections caused by metronidazole-resistant Trichomonas vaginalis. Clin Microbiol Rev 2004;17:783–93.
  • Shehzad MT, Khan A, Halim SA, et al. Synthesis of indole-substituted thiosemicarbazones as an aldose reductase inhibitor: an in vitro, selectivity and in silico study. Future Med Chem 2021;13:1185–201.
  • Cheng R, Shi W, Yuan Q, et al. 5-Substituted isatin thiosemicarbazones as inhibitors of tyrosinase: insights of substituent effects. Spectrochim Acta A Mol Biomol Spectrosc 2021;255:119669.
  • Islam M, Khan A, Shehzad MT, et al. Therapeutic potential of N4-substituted thiosemicarbazones as new urease inhibitors: biochemical and in silico approach. Bioorg Chem 2021;109:104691.
  • Jawaria R, Hussain M, Ahmad HB, et al. Probing ferrocene-based thiosemicarbazones and their transition metal complexes as cholinesterase inhibitors. Inorg Chim Acta 2020;508:119658.
  • Sagnou M, Mavroidi B, Kaminari A, et al. Novel isatin thiosemicarbazone derivatives as potent inhibitors of β-amyloid peptide aggregation and toxicity. ACS Chem Neurosci 2020;11:2266–76.
  • Sevinçli ZŞ, Duran GN, Özbil M, Karalı N. Synthesis, molecular modeling and antiviral activity of novel 5-fluoro-1H-indole-2,3-dione 3-thiosemicarbazones. Bioorg Chem 2020;104:104202.
  • He Z-X, Huo J-L, Gong Y-P, et al. Design, synthesis and biological evaluation of novel thiosemicarbazone-indole derivatives targeting prostate cancer cells. Eur J Med Chem 2021;210:112970.
  • Fuentes-Aguilar A, Romero-Hernández LL, Arenas-González A, et al. New selenosteroids as antiproliferative agents. Org Biomol Chem 2017;15:5041–54.
  • Calcatierra V, López Ó, Fernández-Bolaños JG, et al. Phenolic thio- and selenosemicarbazones as multi-target drugs. Eur J Med Chem 2015;94:63–72.
  • Ansari M, Montazeri M, Daryani A, et al. Synthesis and in vitro anti-Toxoplasma gondii activity of a new series of aryloxyacetophenone thiosemicarbazones. Mol Divers 2020;24:1223–34.
  • Gomes MAGB, Carvalho LP, Rocha BS, et al. Evaluating anti-Toxoplasma gondii activity of new series of phenylsemicarbazone and phenylthiosemicarbazones in vitro. Med Chem Res 2013;22:3574–80.
  • de Aquino TM, Liesen AP, da Silva REA, et al. Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids. Bioorg Med Chem 2008;16:446–56.
  • Rodrigues de Assis DR, Oliveira AA, Porto SL, et al. 4-Chlorophenylthioacetone-derived thiosemicarbazones as potent antitrypanosomal drug candidates: investigations on the mode of action. Bioorg Chem 2021;113:105018.
  • da Silva A, Maia PidS, Lopes CD, et al. Synthesis, characterization and antichagasic evaluation of thiosemicarbazones prepared from chalcones and dibenzalacetones. J Mol Struct 2021;1232:130014.
  • Aguilera E, Perdomo C, Espindola A, et al. A nature-inspired design yields a new class of steroids against trypanosomatids. Molecules 2019;24:3800.
  • de Oliveira Cardoso MV, de Oliveira Filho GB, Pessoa de Siqueira LR, et al. 2-(Phenylthio)ethylidene derivatives as anti-Trypanosoma cruzi compounds: structural design, synthesis and antiparasitic activity. Eur J Med Chem 2019;180:191–203.
  • Bharti N, Husain K, González Garza MT, et al. Synthesis and in vitro antiprotozoal activity of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazone derivatives. Bioorg Med Chem Lett 2002;12:3475–8.
  • Coombs GH, Clackson TE. Antitrichomonal activity of compounds that affect DNA and its repair. J Antimicrob Chemother 1983;11:191–4.
  • Barrett PA, Beveridge E, Bradley PL, et al. Biological activities of some alpha-dithiosemicarbazones. Nature 1965;206:1340–1.
  • Michaels RM, Peterson JL, Stahl GL. The activity of substituted thiosemicarbazones against Trichomonas vaginalis and Trichomonas foetus in vitro and in experimental animals. J Parasitol 1962;48:891–7.
  • Merino-Montiel P, Maza S, Martos S, et al. Synthesis and antioxidant activity of O-alkyl selenocarbamates, selenoureas and selenohydantoins. Eur J Pharm Sci 2013;48:582–92.
  • Merino-Montiel P, López Ó, Fernández-Bolaños JG. l-Isofucoselenofagomine and derivatives: dual activities as antioxidants and as glycosidase inhibitors. Tetrahedron 2012;68:3591–5.
  • Fonseca-Berzal C, Ibáñez-Escribano A, Reviriego F, et al. Antichagasic and trichomonacidal activity of 1-substituted 2-benzyl-5-nitroindazolin-3-ones and 3-alkoxy-2-benzyl-5-nitro-2H-indazoles. Eur J Med Chem 2016;115:295–310.
  • Fonseca-Berzal C, Ibáñez-Escribano A, Vela N, et al. Antichagasic, leishmanicidal, and trichomonacidal activity of 2-benzyl-5-nitroindazole-derived amines. ChemMedChem 2018;13:1246–59.
  • Begines P, Sevilla-Horrillo L, Puerta A, et al. Masked phenolic–selenium conjugates: potent and selective antiproliferative agents overcoming P-gp resistance. Pharmaceuticals 2020;13:358.
  • Lagunes I, Begines P, Silva A, et al. Selenocoumarins as new multitarget antiproliferative agents: synthesis, biological evaluation and in silico calculations. Eur J Med Chem 2019;179:493–501.
  • Begines P, Oliete A, López Ó, et al. Chalcogen-containing phenolics as antiproliferative agents. Future Med Chem 2018;10:319–34.
  • Romero-Hernández LL, Merino-Montiel P, Montiel-Smith S, et al. Diosgenin-based thio(seleno)ureas and triazolyl glycoconjugates as hybrid drugs. Antioxidant and antiproliferative profile. Eur J Med Chem 2015;99:67–81.
  • Fernández-Bolaños JG, López Ó, Ulgar V, et al. Synthesis of O-unprotected glycosyl selenoureas. A new access to bicyclic sugar isoureas. Tetrahedron Lett 2004;45:4081–4.
  • López Ó, Maza S, Ulgar V, et al. Synthesis of sugar-derived isoselenocyanates, selenoureas, and selenazoles. Tetrahedron 2009;65:2556–66.
  • Fonseca-Berzal C, da Silva CF, Batista DGJ, et al. Activity profile of two 5-nitroindazole derivatives over the moderately drug-resistant Trypanosoma cruzi Y strain (DTU TcII): in vitro and in vivo studies. Parasitology 2020;147:1216–28.
  • Espíndola JWP, Cardoso MVO, Filho GBO, et al. Synthesis and structure–activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain. Eur J Med Chem 2015;101:818–35.
  • Rettondin AR, Carneiro ZA, Gonçalves ACR, et al. Gold(III) complexes with ONS-Tridentate thiosemicarbazones: toward selective trypanocidal drugs. Eur J Med Chem 2016;120:217–26.
  • Ibáñez-Escribano A, Meneses-Marcel A, Marrero-Ponce Y, et al. A sequential procedure for rapid and accurate identification of putative trichomonacidal agents. J Microbiol Methods 2014;105:162–7.
  • Gomes MAG, Carvalho LP, Rocha BS, et al. Evaluating anti-Toxoplasma gondii activity of new serie of phenylsemicarbazone and phenylthiosemicarbazones in vitro. Med Chem Res 2013;22:3574–80.
  • Merlino A, Benítez D, Chávez S, et al. Development of second generation amidinohydrazones, thio-and semicarbazones as Trypanosoma cruzi-inhibitors bearing benzofuroxan and benzimidazole 1,3dioxide core scaffolds. Med Chem Commun 2010;1:216–28.
  • Pereira-Neves A, Ribeiro KC, Benchimol M. Pseudocysts in trichomonads-new insights. Protist 2003;154:313–29.