2,322
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Design, synthesis and biological evaluation of novel N-phosphorylated and O-phosphorylated tacrine derivatives as potential drugs against Alzheimer’s disease

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1012-1022 | Received 18 Nov 2021, Accepted 18 Feb 2022, Published online: 31 Mar 2022

References

  • Liu L, Luo S, Zeng L, et al. Degenerative alterations in noradrenergic neurons of the locus coeruleus in Alzheimer’s disease. Neural Regen Res 2013;8:2249–55.
  • Thiratmatrakul S, Yenjai C, Waiwut P, et al. Synthesis, biological evaluation and molecular modeling study of novel tacrine-carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 2014;75:21–30.
  • Guerchet M, Prince M, Prina M. Numbers of people with dementia worldwide: an update to the estimates in the World Alzheimer Report 2015. 2020. Available from: https://www.alzint.org/resource/numbers-of-people-with-dementia-worldwide/.
  • Ragab HM, Teleb M, Haidar HR, Gouda N. Chlorinated tacrine analogs: design, synthesis and biological evaluation of their anti-cholinesterase activity as potential treatment for Alzheimer’s disease. Bioorg Chem 2019;86:557–68.
  • Bature F, Guinn B, Pang D, Pappas Y. Signs and symptoms preceding the diagnosis of Alzheimer’s disease: a systematic scoping review of literature from 1937 to 2016. BMJ Open 2017;7:e015746.
  • Lyketsos CG, Carrillo MC, Ryan JM, et al. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement 2011;7:532–9.
  • Novais F, Starkstein S. Phenomenology of depression in Alzheimer’s disease. J Alzheimers Dis 2015;47:845–55.
  • Karasova JZ, Soukup O, Korabecny J, et al. Tacrine and its 7-methoxy derivate; time-change concentration in plasma and brain tissue and basic toxicological profile in rats. Drug Chem Toxicol 2021;44:207–14.
  • Przybyłowska M, Dzierzbicka K, Kowalski S, et al. Therapeutic potential of multifunctional derivatives of cholinesterase inhibitors. Curr Neuropharmacol 2021;19:1323–44.
  • Hampel H, Mesulam M-M, Cuello AC, et al. Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. J Prev Alzheimers Dis 2019;6:2–15.
  • Hampel H, Mesulam M-M, Cuello AC, et al. Cholinergic System Working Group, and for the Alzheimer Precision Medicine Initiative (APMI). J Prev Alzheimers Dis 2019;6:2–15.
  • Pinto T, Lanctôt KL, Herrmann N. Revisiting the cholinergic hypothesis of behavioral and psychological symptoms in dementia of the Alzheimer’s type. Ageing Res Rev 2011;10:404–12.
  • Douchamps V, Mathis C. A second wind for the cholinergic system in Alzheimer’s therapy. Behav Pharmacol 2017;28:112–23.
  • Eghtedari M, Sarrafi Y, Nadri H, et al. New tacrine-derived AChE/BuChE inhibitors: Synthesis and biological evaluation of 5-amino-2-phenyl-4H-pyrano[2,3-b]quinoline-3-carboxylates. Eur J Med Chem 2017;128:237–46.
  • Fancellu G, Chand K, Tomás D, et al. Novel tacrine-benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer’s Disease . J Enzyme Inhib Med Chem 2020;35:211–26.
  • Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 2014;71:505–8.
  • Gallardo G, Holtzman DM. Amyloid-β and Tau at the Crossroads of Alzheimer’s Disease. Adv Exp Med Biol 2019;1184:187–203.
  • Gao Y, Tan L, Yu J-T, Tan L. Tau in Alzheimer’s disease: mechanisms and therapeutic strategies. Curr Alzheimer Res 2018;15:283–300.
  • Jarrott B. Tacrine: in vivo veritas. Pharmacol Res 2017;116:29–31.
  • Sameem B, Saeedi M, Mahdavi M, Shafiee A. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur J Med Chem 2017;128:332–45.
  • Watkins PB, Zimmerman HJ, Knapp MJ, et al. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA 1994;271:992–8.
  • Chen H, Xiang S, Huang L, et al. Tacrine(10)-hupyridone, a dual-binding acetylcholinesterase inhibitor, potently attenuates scopolamine-induced impairments of cognition in mice. Metab Brain Dis 2018;33:1131–9.
  • Przybyłowska M, Kowalski S, Dzierzbicka K, Inkielewicz-Stepniak I. Inkielewicz-Stepniak I. Therapeutic potential of multifunctional tacrine analogues. Curr Neuropharmacol 2019;17:472–90.
  • de Aquino RAN, Modolo LV, Alves RB, de Fatima A. Design of new drugs for the treatment of Alzheimer’s disease based on tacrine structure. Curr Drug Targets 2013;14:378–97.
  • Marucci G, Buccioni M, Ben DD, et al. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021;190:108352.
  • Yip LY, Aw CC, Lee SH, et al. The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat. Hepatology 2018;67:282–95.
  • Lou G, Montgomery PR, Sitar DS. Bioavailability and pharmacokinetic disposition of tacrine in elderly patients with Alzheimer’s disease. J Psychiatry Neurosci 1996;21:334–9.
  • Forsyth DR, Wilcock GK, Morgan RA, et al. Pharmacokinetics of tacrine hydrochloride in Alzheimer’s disease. Clin Pharmacol Ther 1989;46:634–41.
  • Zhang L, Yu H, Li WM, et al. Preclinical characterization of intestinal absorption and metabolism of promising anti-Alzheimer’s dimer bis(7)-tacrine. Int J Pharm 2008;357:85–94.
  • Wang R, Zhang HY, Tang XC. Huperzine A attenuates cognitive dysfunction and neuronal degeneration caused by beta-amyloid protein-(1-40) in rat. Eur J Pharmacol 2001;421:149–56.
  • Demkowicz S, Rachon J, Daśko M, Kozak W. Selected organophosphorus compounds with biological activity. Applications in medicine. RSC Adv 2016;6:7101–12.
  • Przybyłowska M, Inkielewicz-Stępniak I, Kowalski S, et al. Synthesis and cholinesterase inhibitory activity of N-Phosphorylated/ N-Tiophosphorylated Tacrine. Med Chem 2020;16:947–57.
  • Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–61.
  • Kovalevich J, Langford D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 2013;1078:9–21.
  • de Medeiros LM, De Bastiani MA, Rico EP, et al. Cholinergic differentiation of human neuroblastoma SH-SY5Y cell line and its potential use as an in vitro model for Alzheimer’s disease studies. Mol Neurobiol 2019;56:7355–67.
  • Wang X, Zhang M, Liu H. LncRNA17A regulates autophagy and apoptosis of SH-SY5Y cell line as an in vitro model for Alzheimer’s disease. Biosci Biotechnol Biochem 2019;83:609–21.
  • Scipioni M, Kay G, Megson IL, Lin PKT. Synthesis of novel vanillin derivatives: novel multi-targeted scaffold ligands against Alzheimer’s disease. Medchemcomm 2019;10:764–77.
  • Oukoloff K, Coquelle N, Bartolini M, et al. Design, biological evaluation and X-ray crystallography of nanomolar multifunctional ligands targeting simultaneously acetylcholinesterase and glycogen synthase kinase-3. Eur J Med Chem 2019;168:58–77.
  • Choi JM, Oh SJ, Lee SY, et al. HepG2 cells as an in vitro model for evaluation of cytochrome P450 induction by xenobiotics. Arch Pharm Res 2015;38:691–704.
  • Dogterom P, Nagelkerke JF, Mulder GJ. Hepatotoxicity of tetrahydroaminoacridine in isolated rat hepatocytes: effect of glutathione and vitamin E. Biochem Pharmacol 1988;37:2311–3.
  • Chioua M, Buzzi E, Moraleda I, et al. Tacripyrimidines, the first tacrine-dihydropyrimidine hybrids, as multi-target-directed ligands for Alzheimer’s disease. Eur J Med Chem 2018;155:839–46.
  • Makhaeva GF, Kovaleva NV, Boltneva NP, et al. Conjugates of tacrine and 1,2,4-thiadiazole derivatives as new potential multifunctional agents for Alzheimer’s disease treatment: Synthesis, quantum-chemical characterization, molecular docking and biological evaluation. Bioorg Chem 2020; 94:103387.
  • Wu G, Gao Y, Kang D, et al. Design, synthesis and biological evaluation of tacrine-1,2,3-triazole derivatives as potent cholinesterase inhibitors. MedChemComm 2018;9:149–59.
  • Derabli C, Boualia I, Abdelwahab AB, et al. A cascade synthesis, in vitro cholinesterases inhibitory activity and docking studies of novel Tacrine-pyranopyrazole derivatives. Bioorg Med Chem Lett 2018;28:2481–4.
  • Digiacomo M, Chen Z, Wang S, et al. Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD. Bioorg Med Chem Lett 2015;25:807–10.