1,991
Views
2
CrossRef citations to date
0
Altmetric
Review

Natural source, bioactivity and synthesis of 3-Arylcoumarin derivatives

, , , , , ORCID Icon & ORCID Icon show all
Pages 1023-1042 | Received 10 Jan 2022, Accepted 22 Mar 2022, Published online: 19 Apr 2022

References

  • Yang J, Zhang P, Hu Y, et al. Synthesis and biological evaluation of 3-arylcoumarins as potential anti-Alzheimer's disease agents. J Enzyme Inhib Med Chem 2019;34:651–6.
  • Al-Maharik N. Isolation of naturally occurring novel isoflavonoids: an update. Nat Prod Rep 2019;36:1156–95.
  • Ma QG, Wei RR, Yang M, et al. Molecular characterization and bioactivity of coumarin derivatives from the fruits of Cucumis bisexualis. J Agric Food Chem 2018;66:5540–8.
  • Nichols DB, Leao RA, Basu A, et al. Evaluation of coumarin and neoflavone derivatives as HCV NS5B polymerase inhibitors. Chem Biol Drug Des 2013;81:607–14.
  • Olmedo D, Sancho R, Bedoya LM, et al. 3-Phenylcoumarins as inhibitors of HIV-1 replication. Molecules 2012;17:9245–57.
  • Ugurel E, Danis O, Mutlu O, et al. Inhibitory effects of arylcoumarin derivatives on Bacteroides fragilisd-lactate dehydrogenase. Int J Biol Macromol 2019;127:197–203.
  • Kinoshita T, Tamura Y, Mizutani K. The isolation and structure elucidation of minor isoflavonoids from licorice of Glycyrrhiza glabra origin. Chem Pharm Bull 2005;53:847–9.
  • Kawate T, Iwase N, Shimizu M, et al. Synthesis and structure-activity relationships of phenyl-substituted coumarins with anti-tubercular activity that target FadD32. Bioorg Med Chem Lett 2013;23:6052–9.
  • El-Seedi HR. Antimicrobial arylcoumarins from Asphodelus microcarpus. J Nat Prod 2007;70:118–20.
  • Andrade MF, Kabeya LM, Azzolini AE, et al. 3-Phenylcoumarin derivatives selectively modulate different steps of reactive oxygen species production by immune complex-stimulated human neutrophils. Int Immunopharmacol 2013;15:387–94.
  • Kabeya LM, da Silva CH, Kanashiro A, et al. Inhibition of immune complex-mediated neutrophil oxidative metabolism: a pharmacophore model for 3-phenylcoumarin derivatives using GRIND-based 3D-QSAR and 2D-QSAR procedures. Eur J Med Chem 2008;43:996–1007.
  • Matos   M João, F Borges, L, Santana E, Uriarte, et al. Interest of 3-arylcoumarins as xanthine oxidase inhibitors The 19th International Electronic Conference on Synthetic Organic Chemistry. 2015.
  • Pu W, Lin Y, Zhang J, et al. 3-Arylcoumarins: synthesis and potent anti-inflammatory activity. Bioorg Med Chem Lett 2014;24:5432–4.
  • Quezada E, Delogu G, Picciau C, et al. Synthesis and vasorelaxant and platelet antiaggregatory activities of a new series of 6-halo-3-phenylcoumarins. Molecules 2010;15:270–9.
  • Rodriguez SA, Nazareno MA, Baumgartner MT. Effect of different C3-aryl substituents on the antioxidant activity of 4-hydroxycoumarin derivatives. Bioorg Med Chem 2011;19:6233–8.
  • Svinyarov I, Bogdanov MG. One-pot synthesis and radical scavenging activity of novel polyhydroxylated 3-arylcoumarins. Eur J Med Chem 2014;78:198–206.
  • Durand-Niconoff JS, Matus MH, Juárez-Cerrillo SF, Meléndez FJ. Theoretical study of the global and local reactivity of a series of 3-aryl coumarins. Theor Chem Acc 2016;135:249.
  • Danis O, Demir S, Gunduz C, et al. Synthesis of selected 3- and 4-arylcoumarin derivatives and evaluation as potent antioxidants. Res Chem Intermed 2016;42:6061–77.
  • Pintus F, Matos MJ, Vilar S, et al. New insights into highly potent tyrosinase inhibitors based on 3-heteroarylcoumarins: anti-melanogenesis and antioxidant activities, and computational molecular modeling studies. Bioorg Med Chem 2017;25:1687–95.
  • Robledo-O'Ryan N, Matos MJ, Vazquez-Rodriguez S, et al. Synthesis, antioxidant and antichagasic properties of a selected series of hydroxy-3-arylcoumarins. Bioorg Med Chem 2017;25:621–32.
  • Tsyganov DV, Chernysheva NB, Salamandra LK, et al. Synthesis of Polyalkoxy-3-(4-Methoxyphenyl)Coumarins with antimitotic activity from plant allylpolyalkoxybenzenes. Mendeleev Communications 2013;23:147–9.
  • Yang J, Liu GY, Dai F, et al. Synthesis and biological evaluation of hydroxylated 3-phenylcoumarins as antioxidants and antiproliferative agents. Bioorg Med Chem Lett 2011;21:6420–5.
  • Sashidhara KV, Rao KB, Singh S, et al. Synthesis and evaluation of new 3-phenylcoumarin derivatives as potential antidepressant agents. Bioorg Med Chem Lett 2014;24:4876–80.
  • Jalili-Baleh L, Nadri H, Forootanfar H, et al. Novel 3-phenylcoumarin-lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer's disease. Bioorg Chem 2018;79:223–34.
  • Abdshahzadeh H, Golshani M, Nadri H, et al. 3-aryl coumarin derivatives bearing aminoalkoxy moiety as multi-target-directed ligands against Alzheimer's disease. Chem Biodivers 2019;16:e1800436.
  • Molnar JKaM. Natural and synthetic coumarins as potential anticancer agents. Journal of Chemical and Pharmaceutical Research 2015;7:1223–38.
  • Shen X, Liu X, Wan S, et al. Discovery of coumarin as microtubule affinity-regulating kinase 4 inhibitor that sensitize hepatocellular carcinoma to paclitaxel. Front Chem 2019;7:366.
  • Thakur A, Singla R, Jaitak V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem 2015;101:476–95.
  • Xiao CFH, Li YC, Shi M. Advances in the antitumor activity of 3-arylcoumarins. Guangzhou Chem 2018;43:72–8.
  • Xiao CFH, Liu WH, Shen XL. In vitro antitumor activity of halogenated 3-aryl coumarins. Guangzhou Chem 2019;44:61–64.
  • Zhao H, Yan B, Peterson LB, Blagg BS. 3-Arylcoumarin derivatives manifest anti-proliferative activity through Hsp90 inhibition. ACS Med Chem Lett 2012;3:327–31.
  • Yakarsonmez S, Danis O, Mutlu O, et al. Discovery and evaluation of inhibitory activity and mechanism of arylcoumarin derivatives on Theileria annulata enolase by in vitro and molecular docking studies. Mol Divers 2020;24:1149–64.
  • Han H-Y, Wen P, Liu H-W, et al. Coumarins from Campylotropis hirtella (FRANCH.) SCHINDL. and their inhibitory activity on prostate specific antigen secreted from LNCaP cells. Chem Pharm Bull 2008;56:1338–41.
  • Su Z, Wang P, Yuan W, Li S. Flavonoids and 3-arylcoumarin from Pterocarpus soyauxii. Planta Med 2013;79:487–91.
  • Cevik D, Kan Y, Kirmizibekmez H. Mechanisms of action of cytotoxic phenolic compounds from Glycyrrhiza iconica roots. Phytomedicine 2019;58:152872.
  • Kuroda M, Mimaki Y, Honda S, et al. Phenolics from Glycyrrhiza glabra roots and their PPAR-gamma ligand-binding activity. Bioorg Med Chem 2010;18:962–70.
  • Wang M, Yang W, Liu X, et al. Two new compounds with Nrf2 inducing activity from Glycyrrhiza uralensis. Nat Prod Res 2021;35:4357–64.
  • Yang M, Jin Y, Yang L. A systematic summary of natural compounds in Radix Glycyrrhizae. Tradit Med Res 2018;3:82–94.
  • Gong T, Wang D-X, Yang Y, et al. A novel 3-arylcoumarin and three new 2-arylbenzofurans from mucuna birdwoodiana. Chem Pharm Bull 2010;58:254–6.
  • Li J, Pan L, Deng Y, et al. Sphenostylisins A-K: bioactive modified isoflavonoid constituents of the root bark of Sphenostylis marginata ssp. erecta. J Org Chem 2013;78:10166–77.
  • Liva Harinantenaina PJB, Slebodnick C, Callmander MW, et al. Antiproliferative compounds from pongamiopsis pervilleana from the madagascar dry forest. J Nat Prod 2010;73:1559–62.
  • Tawata M, Yoda Y, Aida K, et al. Anti-platelet action of GU-7, A 3 -arylcoumarin derivative, purified from glycyrrhizae radix. Planta Med 1990;56:259–63.
  • Hatano T, Aga Y, Shintani Y, et al. Minor flavonoids from licorice. Phytochemistry 2000;55:959–63.
  • Fukai T, Ai M, Kaitou K, et al. Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci 2002;71:1449–63.
  • Matsui T, Lallo S, Nisa K, Morita H. Filamenting temperature-sensitive mutant Z inhibitors from Glycyrrhiza glabra and their inhibitory mode of action. Bioorg Med Chem Lett 2017;27:1420–4.
  • Nkengfack AE, Waffo AK, Azebaze GA, et al. Indicanine A, a new 3-phenylcoumarin from root bark of Erythrina indica. J Nat Prod 2000;63:855–6.
  • FaPorzel KA, Schmidt J. Flavone-coumarin hybrids from Gnidia socotrana. Phytochemistry 2002;61:873–8.
  • Zhan QF, Xia ZH, Wang JL, Lao AN. Two new bicoumarins from Trifolium repens L. J Asian Nat Prod Res 2003;5:303–6.
  • Beldjoudi N, Mambu L, Labaïed M, et al. Flavonoids from Dalbergia louvelii and their antiplasmodial activity. J Nat Prod 2003;66:1447–50.
  • Laupattarakasem P, Houghton PJ, Hoult JR. Anti-inflammatory isoflavonoids from the stems of Derris scandens. Planta Med 2004;70:496–501.
  • Li S, Li W, Wang Y, et al. Prenylflavonoids from Glycyrrhiza uralensis and their protein tyrosine phosphatase-1B inhibitory activities. Bioorg Med Chem Lett 2010;20:5398–401.
  • Sakurai Y, Sakurai N, Taniguchi M, et al. Rautandiols A and B, pterocarpans and cytotoxic constituents from Neorautanenia mitis. J Nat Prod 2006;69:397–9.
  • El-S ee di aRH. Antimicrobial arylcoumarins from Asphodelus microcarpus. J Nat Prod 2007;70:118–20.
  • Abdel-Kader MS, Basudan OA, Parveen M, Amer ME. A new 3-arylcoumarin from the roots of an Egyptian collection of Lotus polyphyllos. Nat Prod Res 2008;22:448–52.
  • Su J, Wu ZJ, Zhang WD, et al. Two new bis-coumarin glycosides from Daphne giraldii NITSCHE. Chem Pharm Bull 2008;56:589–91.
  • Yi H, Han PW, Liu HW, et al. Coumarins from campylotropis hirtella (FRANCH.) SCHINDL. and their inhibitory activity on prostate specific antigen secreted from LNCaP cells. Chem Pharm Bull 2008;56:1338–41.
  • Gong T, Wang DX, Yang Y, et al. A novel 3-arylcoumarin and three new 2-arylbenzofurans from Mucuna birdwoodiana. Chem Pharm Bull 2010;41:254–6.
  • Liu JF, X KP, , Li FS, Shen  , et al. A new flavonoid from Selaginella tamariscina (Beauv.) spring. Chem Pharm Bull 2010;58:549–51.
  • Sreelatha T, Hymavathi A, Rama Subba Rao V, et al. A new Benzil derivative from Derris scandens: structure-insecticidal activity study. Bioorg Med Chem Lett 2010;20:549–53.
  • Hymavathi A, Devanand P, Suresh Babu K, et al. Vapor-phase toxicity of Derris scandens Benth-derived constituents against four stored-product pests. J Agric Food Chem 2011;59:1653–7.
  • Harinantenaina L, Brodie PJ, Slebodnick C, et al. Antiproliferative compounds from Pongamiopsis pervilleana from the Madagascar dry forest. J Nat Prod 2010; 73:1559–62.
  • Song ZW, Liu P, Yin WP, et al. Isolation and identification of antibacterial neo-compounds from the red ants of ChangBai Mountain, Tetramorium sp. Bioorg Med Chem Lett 2012;22:2175–81.
  • Rajemiarimiraho M, Banzouzi JT, Rakotonandrasana SR, et al. Pyranocoumarin and triterpene from Millettia richardiana. Nat Prod Commun 2013;8:1099–100.
  • Yin HL, Li JH, Li B, et al. Two new coumarins from the seeds of Solanum indicum. J Asian Nat Prod Res 2014;16:153–7.
  • Mughal UR, Fareed G, Zubair A, et al. Loasins A and B, new flavonoids from Eremostachys loasifolia. Nat Prod Res 2013;27:1906–10.
  • Yang LF, Wang K, Jiang MG, et al. Isolation and characterization of a new bioactive isoflavone from Derris eriocarpa. J Asian Nat Prod Res 2015;17:1002–9.
  • El-Sharkawy E, Selim Y. Three new coumarin types from aerial parts of Ammi majus L. and their cytotoxic activity. Z Naturforsch C J Biosci 2018;73:1–7.
  • Liu J, Zhang X, Shi L, et al. Base-promoted synthesis of coumarins from salicylaldehydes and aryl-substituted 1,1-dibromo-1-alkenes under transition-metal-free conditions. Chem Commun (Camb) 2014;50:9887–90.
  • Jafarpour F, Zarei S, Olia MB, et al. Palladium-catalyzed decarboxylative cross-coupling reactions: a route for regioselective functionalization of coumarins. J Org Chem 2013;78:2957–64.
  • Li C, Zhu H, Zhang H, et al. Synthesis of 2H-Chromenones from Salicylaldehydes and Arylacetonitriles. Molecules 2017;22:1197.
  • Han L. Advances in the study of 3-arylcoumarins and their derivatives. Chenmical Intermediate 2011;4:22–5.
  • Matos MJ, Vilar S, Tatonetti NP, et al. Comparative study of the 3-phenylcoumarin scaffold: synthesis, X-ray structural analysis and semiempirical calculations of a selected series of compounds. J Mol Struct 2013;1050:185–91.
  • Janeiro P, Matos MJ, Santana L, et al. New hydroxylated 3-arylcoumarins, synthesis and electrochemical study. J Electroanal Chem 2013;689:243–51.
  • Schraub M, Kim H-C, Hampp N. Photoinduced refractive index changes of 3-phenyl-coumarin containing polymers for ophthalmic applications. Eur Polymer J 2014;51:21–7.
  • Xiao C-F, Zou Y, Du J-L, et al. Hydroxyl substitutional effect on selective synthesis of cis, trans stilbenes and 3-arylcoumarins through Perkin condensation. Synthetic Communications 2012;42:1243–58.
  • Taksande K, Borse DS, Lokhande P. Facile metal-free synthesis of 3-Aryl-4-substituted coumarins from O-Hydroxy carbonyl compounds. Synth Commun 2010;40:2284–90.
  • Vilar S, Quezada E, Santana L, et al. Design, synthesis, and vasorelaxant and platelet antiaggregatory activities of coumarin-resveratrol hybrids. Bioorg Med Chem Lett 2006;16:257–61.
  • Wang B. Synthesis and preliminary biological activity of 3-aryl coumarin analogues. University of Jinan. 2018.
  • Zeng H, Li CJ. A complete switch of the directional selectivity in the annulation of 2-hydroxybenzaldehydes with alkynes. Angew Chem Int Ed Engl 2014;53:13862–5.
  • Yadav VK, Srivastava VP, Yadav LDS. Pd-catalysed carbonylative annulation of salicylaldehydes with benzyl chlorides using N-formylsaccharin as a CO surrogate. N J Chem 2018;42:16281–6.
  • Yoo HJ, Youn SW. Zn(II)-catalyzed one-pot synthesis of coumarins from ynamides and salicylaldehydes. Org Lett 2019;21:3422–6.
  • Ragupathi A, Sagadevan A, Charpe VP, et al. Visible-light-driven copper-catalyzed aerobic oxidative cascade cyclization of N-tosylhydrazones and terminal alkynes: regioselective synthesis of 3-arylcoumarins. Chem Commun 2019;55:5151–4.
  • Jiang Y, Chen W, Lu W. Synthesis of 3-arylcoumarins through N-heterocyclic carbene catalyzed condensation and annulation of 2-chloro-2-arylacetaldehydes with salicylaldehydes. Tetrahedron 2013;69:3669–76.
  • Jafarpour F, Olia MBA, Hazrati H. Highly regioselective α-arylation of coumarins via palladium-catalyzed C–H Activation/Desulfitative coupling. Adv Synth Catal 2013;355:3407–12.
  • She Z, Shi Y, Huang Y, et al. Versatile palladium-catalyzed C-H olefination of (hetero)arenes at room temperature. Chem Commun 2014;50:13914–6.
  • Chauhan P, Ravi M, Singh S, et al. Regioselective α-arylation of coumarins and 2-pyridones with phenylhydrazines under transition-metal-free conditions. RSC Adv 2016;6:109–18.
  • Yuan J-W, Li W-J, Yang L-R, et al. Regioselective C-3 arylation of coumarins with arylhydrazines via radical oxidation by potassium permanganate. Zeitschrift Für Naturforschung B 2016;71:1115–23.
  • Yuan J-W, Yang L-R, Yin Q-Y, et al. KMnO4/AcOH-mediated C3-selective direct arylation of coumarins with arylboronic acids. RSC Advances 2016;6:35936–44.
  • Golshani M, Khoobi M, Jalalimanesh N, et al. A transition-metal-free fast track to flavones and 3-arylcoumarins. Chem Commun 2017;53:10676–9.
  • Sharma A, Gogoi P. Transition-metal free C(sp(2))-C(sp(2)) bond formation: arylation of 4-aminocoumarins using arynes as an aryl source. Org Biomol Chem 2019;17:9014–25.
  • Srikrishna D, Godugu C, Dubey PK. A review on pharmacological properties of coumarins. Mini Rev Med Chem 2018;18:113–41.
  • Wang SL N, Yang L, Zhang X, et al. Global cancer statistics report explained. J Multidiscip Cancer Manag 2019;5:87–97.
  • Musa MA, Badisa VLD, Latinwo LM, Ntantie E. 8-Dihydroxy-3-arylcoumarin induces cell death through S-Phase arrest in MDA-MB-231 breast cancer cells. Anticancer Res 2018;7:6091–8.
  • Musa MA, Badisa VLD, Latinwo LM, et al. Cytotoxic activity of new acetoxycoumarin derivatives in cancer cell lines. Anticancer Res 2011;31:2017–22.
  • Musa MA, Joseph MY, Latinwo LM, et al. In vitro evaluation of 3-arylcoumarin derivatives in A549 cell line. Anticancer Res 2015;35:653–9.
  • Musa MA, Badisa VLD, Latinwo LM, et al. Coumarin-based benzopyranone derivatives induced apoptosis in human lung (A549) cancer cells. Anticancer Res 2012;32:4271–6.
  • Musa MA, Latinwo LM, Virgile C, et al. Synthesis and in vitro evaluation of 3-(4-nitrophenyl)coumarin derivatives in tumor cell lines. Bioorg Chem 2015;58:96–103.
  • Liu Z-h, Li D-j, Jiang D, et al. Design, synthesis and antitumor activity in vitro of a series of 3-arylcoumarins. Chem Res Chinese Universities 2013;29:1125–8.
  • Serra S, Andrea C J, Gertsch L, Santana, et al. Synthesis of a series of different hydroxycoumarins and their cytotoxic activity. 2012.
  • Xiao CF, Tao LY, Sun HY, et al. Design, synthesis and antitumor activity of a series of novel coumarin–stilbenes hybrids, the 3-arylcoumarins. Chinese Chem Letters 2010;21:1295–8.
  • Musa MA, Latinwo LM, Joseph MY, Badisa VL. Identification of 7,8-diacetoxy-3-arylcoumarin derivative as a selective cytotoxic and apoptosis-inducing agent in a human prostate cancer cell line. Anticancer Res 2017;37:6005–14.
  • Musa MA, Gbadebo AJ, Latinwo LM, Badisa VL. 7,8-Dihydroxy-3-(4-nitrophenyl)coumarin induces cell death via reactive oxygen species-independent S-phase cell arrest. J Biochem Mol Toxicol 2018;32:e22203.
  • Alparslan MM, Danış Ö. In vitro inhibition of human placental glutathione s-transferase by 3-arylcoumarin derivatives. Arch Pharm 2015;348:635–42.
  • Matos MJ, Pérez-Cruz F, Vazquez-Rodriguez S, et al. Remarkable antioxidant properties of a series of hydroxy-3-arylcoumarins. Bioorg Med Chem 2013;21:3900–6.
  • Roussaki M, Kontogiorgis CA, Hadjipavlou-Litina D, et al. A novel synthesis of 3-aryl coumarins and evaluation of their antioxidant and lipoxygenase inhibitory activity. Bioorg Med Chem Lett 2010;20:3889–92.
  • Matos MJ, Mura F, Vazquez-Rodriguez S, et al. Study of coumarin-resveratrol hybrids as potent antioxidant compounds. Molecules 2015;20:3290–308.
  • Matos MJ, Teran C, Perez-Castillo Y, et al. Synthesis and study of a series of 3-arylcoumarins as potent and selective monoamine oxidase B inhibitors. J Med Chem 2011;54:7127–37.
  • Matos MJ, Vazquez-Rodriguez S, Uriarte E, et al. MAO inhibitory activity modulation: 3-Phenylcoumarins versus 3-benzoylcoumarins. Bioorg Med Chem Lett 2011;21:4224–7.
  • Matos MJ, Vilar S, Garcia-Morales V, et al. Insight into the functional and structural properties of 3-arylcoumarin as an interesting scaffold in monoamine oxidase B inhibition. ChemMedChem 2014;9:1488–500.
  • Matos MJ, Rodriguez-Enriquez F, Vilar S, et al. Potent and selective MAO-B inhibitory activity: amino- versus nitro-3-arylcoumarin derivatives. Bioorg Med Chem Lett 2015;25:642–8.
  • Rauhamaki S, Postila PA, Niinivehmas S, et al. Structure-activity relationship analysis of 3-phenylcoumarin-based monoamine oxidase B inhibitors. Front Chem 2018;6:41.
  • Faivre F, Joshi A, Bezard E, Barrot M. The hidden side of Parkinson's disease: studying pain, anxiety and depression in animal models. Neurosci Biobehav Rev 2019;96:335–52.
  • Matos MJ, Viña D, Vazquez-Rodriguez S, et al. Focusing on new monoamine oxidase inhibitors: differently substituted coumarins as an interesting scaffold. Curr Top Med Chem 2012;12:2210–39.
  • Ferino G, Cadoni E, Matos MJ, et al. MAO inhibitory activity of 2-arylbenzofurans versus 3-arylcoumarins: synthesis, in vitro study, and docking calculations. ChemMedChem 2013;8:956–66.
  • Sashidhara KV, Modukuri RK, Jadiya P, et al. Discovery of 3-arylcoumarin-tetracyclic tacrine hybrids as multifunctional agents against Parkinson's disease. ACS Med Chem Lett 2014;5:1099–103.
  • Hu YH, Yang J, Zhang Y, et al. Synthesis and biological evaluation of 3-(4-aminophenyl)-coumarin derivatives as potential anti-Alzheimer's disease agents. J Enzyme Inhib Med Chem 2019;34:1083–92.
  • Wang Z-M, Li X-M, Xue G-M, et al. Synthesis and evaluation of 6-substituted 3-arylcoumarin derivatives as multifunctional acetylcholinesterase/monoamine oxidase B dual inhibitors for the treatment of Alzheimer’s disease. RSC Adv 2015;5:104122–37.
  • Kuroda M, Mimaki Y, Sashida Y, et al. Phenolics with PPAR-gamma ligand-binding activity obtained from licorice (Glycyrrhiza uralensis roots) and ameliorative effects of glycyrin on genetically diabetic KK-A(y) mice. Bioorg Med Chem Lett 2003;13:4267–72.
  • Matos MJ, Vazquez-Rodriguez S, Santana L, et al. Synthesis and structure-activity relationships of novel amino/nitro substituted 3-arylcoumarins as antibacterial l agents. Molecules 2013;18:1394–404.
  • Hu Y, Wang B, Yang J, et al. Synthesis and biological evaluation of 3-arylcoumarin derivatives as potential anti-diabetic agents. J Enzyme Inhib Med Chem 2019;34:15–30.
  • Pisano MB, Kumar A, Medda R, et al. Antibacterial Activity and Molecular Docking Studies of a Selected Series of Hydroxy-3-arylcoumarins. Molecules 2019;24:2815.
  • Serra S, Vázquez-Rodríguez S, Delogu G, et al. Synthesis of various substituted 3-aryl-4-hydroxycoumarins as new possible drugs of the tenacibaculosis disease. International Electronic Conference on Synthetic Organic Chemistry 15th. 2011.
  • Matos MJ, Santana L, Uriarte E, et al. New halogenated phenylcoumarins as tyrosinase inhibitors. Bioorg Med Chem Lett 2011;21:3342–5.
  • Matos MJ, Varela C, Vilar S, et al. Design and discovery of tyrosinase inhibitors based on a coumarin scaffold. RSC Adv 2015;5:94227–35.
  • Matos MJ, Hogger V, Gaspar A, et al. Synthesis and adenosine receptors binding affinities of a series of 3-arylcoumarins. J Pharm Pharmacol 2013;65:1590–7.
  • Matos MJ, Vilar S, Vazquez-Rodriguez S, et al. Structure-based optimization of coumarin hA3 adenosine receptor antagonists. J Med Chem 2020;63:2577–87.
  • de Souza Santos M, Freire de Morais Del Lama MP, Deliberto LA, et al. In situ screening of 3-arylcoumarin derivatives reveals new inhibitors of mast cell degranulation. Arch Pharm Res 2013;36:731–8.
  • Bakhchinian R, Bouchoux F, Kirkiacharian S. [Synthesis and binding affinity to human steroid hormone receptors of 3-phenoxy-4-hydroxycoumarins and 3-phenoxy-4-phenylcoumarins. Ann Pharm Fr 2017;75:455–62.
  • Niinivehmas S, Postila PA, Rauhamaki S, et al. Blocking oestradiol synthesis pathways with potent and selective coumarin derivatives. J Enzyme Inhib Med Chem 2018;33:743–54.