1,384
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

Interactions of 2,6-substituted purines with purine nucleoside phosphorylase from Helicobacter pylori in solution and in the crystal, and the effects of these compounds on cell cultures of this bacterium

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1083-1097 | Received 07 Jun 2021, Accepted 29 Mar 2022, Published online: 18 Apr 2022

References

  • Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984;1:1311–5.
  • Makola D, Peura DA, Crowe SE. Helicobacter pylori infection and related gastrointestinal diseases. J Clin Gastroenterol 2007;41:548–58.
  • Robinson K, Atherton JC. The spectrum of Helicobacter-mediated diseases. Annu Rev Pathol Mech Dis 2021;16:123–44.
  • Falco MDE, Lucariello A, Iaquinto S, et al. Molecular mechanisms of Helicobacter pylori pathogenesis. J Cell Physiol 2015;230:1702–7.
  • Cover TL. Helicobacter pylori diversity and gastric cancer risk. mBio 2016;7:1–9.
  • Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7–14 June 1994. IARC Monogr Eval Carcinog Risks Hum 1994;61:1–241.
  • Georgopoulos S, Papastergiou V. An update on current and advancing pharmacotherapy options for the treatment of H. pylori infection. Expert Opin Pharmacother 2021;22:729–41.
  • De Freitas LC. WHO (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Cad Pesqui 2013;43:348–65.
  • Roszczenko-Jasińska P, Wojtyś MI, Jagusztyn-Krynicka EK. Helicobacter pylori treatment in the post-antibiotics era-searching for new drug targets. Appl Microbiol Biotechnol 2020;104:9891–905.
  • Campestre C, De Luca V, Carradori S, et al. Carbonic anhydrases: new perspectives on protein functional role and inhibition in Helicobacter pylori. Front Microbiol 2021;12:1–12.
  • Ullman B, Carter D. Hypoxanthine-guanine phosphoribosyltransferase as a therapeutic target in protozoal infections. Infect Agents Dis 1995;4:29–40.
  • El Kouni MH. Potential chemotherapeutic targets in the purine metabolism of parasites. Pharmacol Ther 2003;99:283–309.
  • de Koning HP, Bridges DJ, Burchmore RJS. Purine and pyrimidine transport in pathogenic protozoa: from biology to therapy. FEMS Microbiol Rev 2005;29:987–1020.
  • Hyde JE. Fine targeting of purine salvage in cryptosporidium parasites. Trends Parasitol 2008;24:336–9.
  • Berg M, Van der Veken P, Goeminne A, et al. Inhibitors of the purine salvage pathway: a valuable approach for antiprotozoal chemotherapy? Curr Med Chem 2010;17:2456–81.
  • Evans GB, Tyler PC, Schramm VL. Immucillins in infectious diseases. ACS Infect Dis 2018;4:107–17.
  • Liechti G, Goldberg JB. Helicobacter pylori relies primarily on the purine salvage pathway for purine nucleotide biosynthesis. J Bacteriol 2012;194:839–54.
  • Il’icheva IA, Polyakov KM, Mikhailov SN. Strained conformations of nucleosides in active sites of nucleoside phosphorylases. Biomolecules 2020;10:552.
  • Koellner G, Luić M, Shugar D, et al. Crystal structure of the ternary complex of E. coli purine nucleoside phosphorylase with formycin B, a structural analogue of the substrate inosine, and phosphate (sulphate) at 2.1 A resolution. J Mol Biol 1998;280:153–66.
  • Narczyk M, Bertoša B, Papa L, et al. Helicobacter pylori purine nucleoside phosphorylase shows new distribution patterns of open and closed active site conformations and unusual biochemical features. FEBS J 2018;285:1305–25.
  • Štefanić Z, Mikleušević G, Luić M, et al. Structural characterization of purine nucleoside phosphorylase from human pathogen Helicobacter pylori. Int J Biol Macromol 2017;101:518–26.
  • Bzowska A, Magnowska L, Kazimierczuk Z. Synthesis of 6-aryloxy- and 6-arylalkoxy-2-chloropurines and their interactions with purine nucleoside phosphorylase from Escherichia coli. Z Naturforsch C 1999;54:1055–67.
  • Jones JW, Robins RK. Purine nucleosides. III. Methylation studies of certain naturally occurring purine nucleosides. J Am Chem Soc 1963;85:193–201.
  • Schrader WP, Stacy AR, Pollara B. Purification of human erythrocyte adenosine deaminase by affinity column chromatography. J Biol Chem 1976;251:4026–32.
  • Bzowska A, Kazimierczuk Z, Seela F. 7-deazapurine 2'-deoxyribofuranosides are noncleavable competitive inhibitors of Escherichia coli purine nucleoside phosphorylase (PNP). Acta Biochim Pol 1998;45:755–68.
  • Bzowska A, Kazimierczuk Z. 2-Chloro-2'-deoxyadenosine (cladribine) and its analogues are good substrates and potent selective inhibitors of Escherichia coli purine-nucleoside phosphorylase. Eur J Biochem 1995;233:886–90.
  • Kalckar HM, Shafran W. Differential spectrophotometry of purine compounds by means of specific enzymes; Determination of hydroxypurine compounds. J Biol Chem 1947;167:429–43.
  • Kulikowska E, Bzowska A, Wierzchowski J, Shugar D. Properties of two unusual, and fluorescent, substrates of purine-nucleoside phosphorylase: 7-methylguanosine and 7-methylinosine. Biochim Biophys Acta (BBA)/Protein Struct Mol 1986;874:355–63.
  • Bzowska A, Kulikowska E, Shugar D. Properties of purine nucleoside phosphorylase (PNP) of mammalian and bacterial origin. Z Naturforsch C J Biosci 1990;45:59–70.
  • Segel IH, Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Vol. 2. New York, NY: John Wiley Sons; 1993.
  • Copeland RA, Enzymes. New York, NY: John Wiley & Sons, Inc.; 2000.
  • Irie Y, Tateda K, Matsumoto T, et al. Antibiotic MICs and short time-killing against Helicobacter pylori: therapeutic potential of kanamycin. J Antimicrob Chemother 1997;40:235–40.
  • Chowers MY, Keller N, Tal R, et al. Human gastrin: a Helicobacter pylori-specific growth factor. Gastroenterology 1999;117:1113–8.
  • Knezevic P, Aleksic Sabo V, Simin N, et al. A colorimetric broth microdilution method for assessment of Helicobacter pylori sensitivity to antimicrobial agents. J Pharm Biomed Anal 2018;152:271–8.
  • Krzyżek P, Franiczek R, Krzyżanowska B, et al. In vitro activity of 3-bromopyruvate, an anticancer compound, against antibiotic-susceptible and antibiotic-resistant Helicobacter pylori strains. Cancers (Basel) 2019;11:229.
  • EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, 2021. Available from: http://www.eucast.org.
  • Pillai SK, Eliopoulos GM, Moellering RC. Antimicrobial combinations. Antibiotics in laboratory medicine. Philadelphia, PA: Wolters Kluwer Health; 2005:365–409.
  • Kabsch W. Xds. Acta Crystallogr D Biol Crystallogr 2010;66:125–32.
  • Vagin A, Teplyakov A. MOLREP: an automated program for molecular replacement. J Appl Crystallogr 1997;30:1022–5.
  • Liebschner D, Afonine PV, Baker ML, Bunkóczi G, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in phenix. Acta Crystallogr D Struct Biol 2019;75:861–77.
  • Schrödinger LLC. The {PyMOL} molecular graphics system, Version∼1.8. 2015.
  • Mikleušević G, Štefanić Z, Narczyk M, et al. Validation of the catalytic mechanism of Escherichia coli purine nucleoside phosphorylase by structural and kinetic studies. Biochimie 2011;93:1610–22.
  • Luić M, Štefanić Z. Can crystal symmetry and packing influence the active site conformation of homohexameric purine nucleoside phosphorylases? Croat Chem Acta 2016;89:197–202.