1,632
Views
0
CrossRef citations to date
0
Altmetric
Brief Reports

Phosphorus containing analogues of SAHA as inhibitors of HDACs

, , , , &
Pages 1315-1319 | Received 17 Nov 2021, Accepted 03 Apr 2022, Published online: 05 May 2022

References

  • Bruce Alberts AJ, J, Lewis, M, Raff, et al. Chromosomal DNA and its packaging in the chromatin fiber, In: Molecular Biology of the Cell. New York: Garland Science; 2002.
  • Morales V, Giamarchi C, Chailleux C, et al. Chromatin structure and dynamics: Functional implications. Biochimie 2001;83:1029–39.
  • Nair N, Shoaib M, Sørensen CS. Chromatin dynamics in genome stability: roles in suppressing endogenous DNA damage and facilitating DNA repair. Int J Mol Sci 2017;18:1486.
  • Koltover I, Wagner K, Safinya CR. DNA condensation in two dimensions. Proc Natl Acad Sci U S A 2000;97:14046–51.
  • Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 2007;26:5310–8.
  • Peserico A, Simone C. Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2011;2011:371832.
  • Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 2015;115:2274–95.
  • Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 2014;6:a018713.
  • Bassett SA, Barnett MPG. The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients 2014;6:4273–301.
  • Milazzo G, Mercatelli D, Di Muzio G, et al. Histone deacetylases (HDACs): evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes (Basel) 2020;11:556.
  • Fernandes HS, Teixeira CSS, Sousa SF, Cerqueira NMFSA. Formation of unstable and very reactive chemical species catalyzed by metalloenzymes: a mechanistic overview. Molecules 2019;24:2462.
  • Porter NJ, Christianson DW. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases. Curr Opin Struct Biol 2019;59:9–18.
  • Hai Y, Christianson DW. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat Chem Biol 2016;12:741–7.
  • Tang J, Yan H, Zhuang S. Histone deacetylases as targets for treatment of multiple diseases. Clin Sci (Lond) 2013;124:651–62.
  • Beckers T, Burkhardt C, Wieland H, et al. Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int J Cancer 2007;121:1138–48.
  • Al-Yacoub N, Fecker LF, Möbs M, et al. Apoptosis induction by SAHA in cutaneous T-cell lymphoma cells is related to downregulation of c-FLIP and enhanced TRAIL signaling. J Invest Dermatol 2012;132:2263–74.
  • Vannini A, Volpari C, Filocamo G, et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci U. S. A. 2004;101:15064–9.
  • Zhang L, Zhang J, Jiang Q, et al. Zinc binding groups for histone deacetylase inhibitors. J Enzyme Inhib Med Chem 2018;33:714–21.
  • Gong W, Wu R, Zhang Y. Thiol versus hydroxamate as zinc binding group in HDAC inhibition: An ab initio QM/MM molecular dynamics study. J Comput Chem 2015;36:2228–35.
  • Negmeldin AT, Padige G, Bieliauskas AV, Pflum MKH. Structural requirements of HDAC inhibitors: SAHA analogues modified at the C2 position display HDAC6/8 selectivity. ACS Med Chem Lett 2017;8:281–6.
  • Nardella F, Halby L, Dobrescu I, et al. Procainamide-SAHA fused inhibitors of hHDAC6 tackle multidrug-resistant malaria parasites. J Med Chem 2021;64:10403–17.
  • Huang W-J, Chen C-C, Chao S-W, et al. Synthesis and evaluation of aliphatic-chain hydroxamates capped with osthole derivatives as histone deacetylase inhibitors. Eur J Med Chem 2011;46:4042–9.
  • Kapustin GV, Fejér G, Gronlund JL, et al. Phosphorus-based SAHA analogues as histone deacetylase inhibitors. Org Lett 2003;5:3053–6.
  • Yang F, Zhao N, Ge D, Chen Y. Next-generation of selective histone deacetylase inhibitors. RSC Advances 2019;9:19571–83.
  • Chakrabarti A, Oehme I, Witt O, et al. HDAC8: a multifaceted target for therapeutic interventions. Trends Pharmacol Sci 2015;36:481–92.
  • Marek M, Shaik TB, Heimburg T, et al. Characterization of histone deacetylase 8 (HDAC8) selective inhibition reveals specific active site structural and functional determinants. J Med Chem 2018;61:10000–16.
  • Spreafico M, Gruszka AM, Valli D, et al. HDAC8: a promising therapeutic target for acute myeloid leukemia. Front Cell Develop Biol 2020;8:844.
  • Rettig I, Koeneke E, Trippel F, et al. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell Death Dis 2015;6:e1657.
  • Robers MB, Dart ML, Woodroofe CC, et al. Target engagement and drug residence time can be observed in living cells with BRET. Nature Communications 2015;6:10091.
  • (2013) Slow Binding Inhibitors, in Evaluation of Enzyme Inhibitors in Drug Discovery pp 203–244.
  • Walkup GK, You Z, Ross PL, et al. Translating slow-binding inhibition kinetics into cellular and in vivo effects. Nat Chem Biol 2015;11:416–23.
  • Lu H, Tonge PJ. Drug-target residence time: critical information for lead optimization. Curr Opin Chem Biol 2010;14:467–74.
  • Chou CJ, Herman D, Gottesfeld JM. Pimelic diphenylamide 106 is a slow, tight-binding inhibitor of class I histone deacetylases *. J Biol Chem 2008;283:35402–9.
  • Stals PJM, Phan TNT, Gigmes D, et al. Nitroxide-mediated controlled radical polymerizations of styrene derivatives. J. Polym. Sci. A: Polym. Chem 2012;50:780–91.