1,714
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

Novel Sunifiram-carbamate hybrids as potential dual acetylcholinesterase inhibitor and NMDAR co-agonist: simulation-guided analogue design and pharmacological screening

, , ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Pages 1241-1256 | Received 19 Dec 2021, Accepted 15 Apr 2022, Published online: 28 Apr 2022

References

  • McWhirter L, Ritchie C, Stone J, Carson A. Functional cognitive disorders: a systematic review. Lancet Psychiatry 2020;7:191–207.
  • Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness. Trends Neurosci 1999;22:273–80.
  • Francis PT, Parsons CG, Jones RW. Rationale for combining glutamatergic and cholinergic approaches in the symptomatic treatment of Alzheimer’s disease. Expert Rev Neurother 2012;12:1351–65.
  • Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: targeting the Cholinergic System. Curr Neuropharmacol 2016;14:101–15.
  • Jang C, Yadav DK, Subedi L, et al. Identification of novel acetylcholinesterase inhibitors designed by pharmacophore-based virtual screening, molecular docking and bioassay. Sci Rep 2018;8:14921.
  • Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics (review). Mol Med Rep 2019;20:1479–87.
  • Marucci G, Buccioni M, Ben DD, et al. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease’. Neuropharmacology 2021;190:108352.
  • Santangelo RM, Acker TM, Zimmerman S, et al. Novel NMDA receptor modulators: an update. Expert Opin Ther Pat 2012;22:1337–52.
  • Collingridge GL, Volianskis A, Bannister N, et al. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 2013;64:13–26.
  • Rowland LM, Astur RS, Jung RE, et al. Selective cognitive impairments associated with NMDA receptor blockade in humans. Neuropsychopharmacology 2005;30:633–9.
  • Ikarashi Y, Yuzurihara M, Takahashi A, et al. Direct regulation of acetylcholine release by N-methyl-d-aspartic acid receptors in rat striatum. Brain Res 1998;795:215–20.
  • Palencia CA, Ragozzino ME. The effect of N-methyl-d-aspartate receptor blockade on acetylcholine efflux in the dorsomedial striatum during response reversal learning. Neuroscience 2006;143:671–8.
  • Mishizen-Eberz AJ, Rissman RA, Carter TL, et al. Biochemical and molecular studies of NMDA receptor subunits NR1/2A/2B in hippocampal subregions throughout progression of Alzheimer’s disease pathology. Neurobiol Dis 2004;15:80–92.
  • Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 1995;52:998–1007.
  • Parwani A, Weiler MA, Blaxton T, Warfel AD, et al. The effects of a subanesthetic dose of ketamine on verbal memory in normal volunteers. Psychopharmacology 2005;183:265–74.
  • Cummings KA, Popescu GK. Glycine-dependent activation of NMDA receptors. J Gen Physiol 2015;145:513–27.
  • Martina M, Gorfinkel Y, Halman S, et al. Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J Physiol 2004;557:489–500.
  • Peyrovian B, Rosenblat JD, Pan Z, et al. The glycine site of NMDA receptors: a target for cognitive enhancement in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019;92:387–404.
  • Yao L, Zhou Q. Enhancing NMDA receptor function: recent progress on allosteric modulators. Neural Plast 2017;2017:2875904.
  • Herdon HJ, Godfrey FM, Brown AM, et al. Pharmacological assessment of the role of the glycine transporter GlyT-1 in mediating high-affinity glycine uptake by rat cerebral cortex and cerebellum synaptosomes. Neuropharmacology 2001;41:88–96.
  • Moskal JR, Burch R, Burgdorf JS, et al. GLYX-13, an NMDA receptor glycine site functional partial agonist enhances cognition and produces antidepressant effects without the psychotomimetic side effects of NMDA receptor antagonists. Expert Opin Investig Drugs 2014;23:243–54.
  • Moriguchi S, Tanaka T, Narahashi T, Fukunaga K. Novel nootropic drug Sunifiram enhances hippocampal synaptic efficacy via glycine-binding site of N-methyl-D-aspartate receptor. Hippocampus 2013;23:942–51.
  • Gualtieri F. Unifi nootropics from the lab to the web: a story of academic (and industrial) shortcomings. J Enzyme Inhib Med Chem 2016;31:187–94.
  • Romanelli MN, Galeotti N, Ghelardini C, et al. Pharmacological characterization of DM232 (Unifiram) and DM235 (Sunifiram), new potent cognition enhancers. CNS Drug Rev 2006;12:39–52.
  • Bowie CR, Harvey PD. Treatment of cognitive deficits in schizophrenia. Curr Opin Investig Drugs 2006;7:608–13.
  • Rogers JM, Panegyres PK. Cognitive impairment in multiple sclerosis: evidence-based analysis and recommendations. J Clin Neurosci 2007;14:919–27.
  • Scatena R, Martorana GE, Bottoni P, et al. An update on pharmacological approaches to neurodegenerative diseases. Expert Opin Investig Drugs 2007;16:59–72.
  • Wang Y, Jin J, Moore ML, et al. Monoacylation of unprotected symmetrical diamines with resin-bound benzoic acids. Tetrahedron Lett 2004;45:6645–8.
  • Pringle W. Mono-acylation of piperazine and homopiperazine via ionic immobilization. Tetrahedron Lett 2008;49:5047–9.
  • Darvesh S, Darvesh KV, McDonald RS, et al. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J Med Chem 2008;51:4200–12.
  • Agha KA, Abo-Dya NE, Ibrahim TS, et al. N-Acylbenzotriazole: convenient approach for protecting group-free monoacylation of symmetric diamines. MonatshChem 2020;151:589–98.
  • Masiukiewicz E, Rzeszotarska B, Gorczyca IW, Kołodziejczyk E. Peptide synthesis with 5‐amino‐1‐methyl‐1H‐[1,2,4]triazole‐3‐carboxylic acid. Synth Commun 2007;37:1917–25.
  • Katritzky AR, Wang M, Yang H, et al. 1-(α-Boc-aminoacyl)benzotriazoles: stable chiral α-aminoacylation reagents. Arkivoc 2002;2002:134–42.
  • Avan I, Tala SR, Steel PJ, Katritzky AR. Benzotriazole-mediated syntheses of depsipeptides and oligoesters. J Org Chem 2011;76:4884–93.
  • Gaugler J, James B, Johnson T, Scholz K, Weuve J. 2020 Alzheimer’s disease facts and figures. Alzheimer Document 2020;16:391–460.
  • Lau JK, Brown KC, Thornhill BA, et al. Inhibition of cholinergic signaling causes apoptosis in human bronchioalveolar carcinoma. Cancer Res 2013;73:1328–39.
  • Deutsch SI, Tang AH, Burket JA, Benson AD. NMDA receptors on the surface of cancer cells: target for chemotherapy? Biomed Pharmacother 2014;68:493–6.
  • Lau JK, Brown KC, Dasgupta P. Measurement of acetylcholine from cell lines. Bio-protocol 2013;3:e1007.
  • Stockert JC, Horobin RW, Colombo LL, Blázquez-Castro A. Tetrazolium salts and formazan products in cell biology: viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem 2018;120:159–67.
  • Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.
  • Feng X, Wang X, Liu Y, Di X. Linarin inhibits the acetylcholinesterase activity in-vitro and ex-vivo. Iran J Pharm Res IJPR 2015;14:949–54.
  • Ghajarbeygi P, Hajhoseini A, Hosseini MS, Sharifan A. An in vitro and in vivo cholinesterase inhibitory activity of pistacia khinjuk and allium sativum essential oils. J Pharmacopunct 2019;22:231–8.
  • Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Reviews 2017;9:91–102.
  • Klopman G, Stefan LR, Saiakhov RD. ADME evaluation. 2. A computer model for the prediction of intestinal absorption in humans. Eur J Pharm Sci 2002;17:253–63.
  • Lin JH, Lu AY. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 1997;49:403–49.
  • Lombardo F, Desai PV, Arimoto R, et al. In silico absorption, distribution, metabolism, excretion, and pharmacokinetics (ADME-PK): utility and best practices. An industry perspective from the international consortium for innovation through quality in pharmaceutical development. J Med Chem 2017;60:9097–113.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3–26.
  • Agha KA, Ibrahim TS, Elsherbiny NM, et al. Design, synthesis and pharmacological screening of novel renoprotective methionine-based peptidomimetics: amelioration of cisplatin-induced nephrotoxicity. Bioorg Chem 2021;114:105100.
  • Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005;2:541–53.
  • Bartolucci C, Siotto M, Ghidini E, et al. Structural determinants of Torpedo californica acetylcholinesterase inhibition by the novel and orally active carbamate based anti-Alzheimer drug Ganstigmine (CHF-2819). J Med Chem 2006;49:5051–8.
  • Gumus M, Özgür A, Tutar L, et al. Design, synthesis, and evaluation of heat shock protein 90 inhibitors in human breast cancer and its metastasis. Curr Pharm Biotechnol 2016;17:1231–45.
  • Bar-On P, Millard CB, Harel M, et al. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochem 2002;41:3555–64.
  • Agha KA, Abo-dya NE, Ibrahim TS, Abdel-aal EH. Efficient synthesis of N -acylbenzotriazoles using tosyl chloride: en route to suberoylanilide hydroxamic acid (SAHA). Arkivoc 2016;2016:161–70.
  • Manetti D, Ghelardini C, Bartolini A, et al. Molecular simplification of 1,4-diazabicyclo[4.3.0]nonan-9-ones gives piperazine derivatives that maintain high nootropic activity. J Med Chem 2000;43:4499–507.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–61.
  • Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol 2015;1263:243–50.
  • Hanwell MD, Curtis DE, Lonie DC, et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics 2012;4:17.
  • Biovia DS. Discovery studio. San Diego: Dassault Systèmes; 2017.