2,279
Views
0
CrossRef citations to date
0
Altmetric
Research Papers

Identification of highly selective type II kinase inhibitors with chiral peptidomimetic tails

ORCID Icon, , , , , , , , , , ORCID Icon, , ORCID Icon, , , & show all
Pages 1257-1277 | Received 14 Jan 2022, Accepted 12 Apr 2022, Published online: 28 Apr 2022

References

  • For selected reviews, see: (a) Wu P, Nielsen TE, Clausen MH. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discovery Today 2016;21:5–10. (b) Wu P, Nielsen TE, Clausen MH. FDA-approved small-molecule kinase inhibitors. Trends Pharmaco Sci 2015;36:422–39. (c) Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 2009;9:28–39. (d) Ferguson FM, Gray NS. Kinase inhibitors: the road ahead. Nat Rev Drug Discov 2018;17:353–77. (e) Fedorov O, Müller S, Knapp S. The (un)targeted cancer kinome. Nat Chem Biol 2010;6:166–9. (f) Schwartz PA, Murray BW. Protein kinase biochemistry and drug discovery. Bioorg Chem 2011;39:192–210. (g) Cohen P. Protein kinases-the major drug targets of the twenty-first century? Nat Rev Drug Discov 2002;1:309–15. (h) Grant SK. Therapeutic protein kinase inhibitors. Cell Mol Life Sci 2009;66:1163–77. (i) Pottier C, Fresnais M, Gilon M, et al. Tyrosine kinase inhibitors in cancer: breakthrough and challenges of targeted therapy. Cancers 2020;12:731. (j) Gagic Z, Ruzic D, Djokovic N, et al. In silico methods for design of kinase inhibitors as anticancer drugs. Frontiers in Chemistry 2019;7:873.
  • (a) Zhao Z, Wu H, Wang L, et al. Exploration of type II binding mode: a privileged approach for kinase inhibitor focused drug discovery? ACS Chem Biol 2014;9:1230–41. (b) Roskoski R., Jr. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol Res 2016;103:26–48.
  • (a) Sun J, Niu Y, Wang C, et al. Discovery of 3-benzyl-1,3-benzoxazine-2,4-dione analogues as allosteric mitogen-activated kinase kinase (MEK) inhibitors and anti-enterovirus 71 (EV71) agents. Bioorg Med Chem 2016;24:3472–82. (b) Comess KM, Sun C, Abad-Zapatero C, et al. Discovery and characterization of non-ATP site inhibitors of the mitogen activated protein (MAP) kinases. ACS Chem Biol 2011;6:234–44. (c) Wu P, Clausen MH, Nielsen TE. Allosteric small-molecule kinase inhibitors. Pharmacol Therapeut 2015;156:59–68. (d) Converso A, Hartingh T, Garbaccio RM, Tasber E, et al. Development of thioquinazolinones, allosteric Chk1 kinase inhibitors. Bioorg Med Chem Lett 2009;19:1240–4. (e) Lu X, Smaill JB, Ding K. New promise and opportunities for allosteric kinase inhibitors. Angew Chem Int Ed Engl 2020;59:13764–76.
  • (a) Zhao Z, Bourne PE. Progress with covalent small-molecule kinase inhibitors. Drug Discovery Today 2018;23:727–35. (b) Liu Q, Sabnis Y, Zhao Z, et al. Developing irreversible inhibitors of the protein kinase cysteinome. Chem Biol 2013;20:146–59. (c) Weisner J, Gontla R, van der Westhuizen L, et al. Covalent-allosteric kinase inhibitors. Angew Chem Int Ed Engl 2015;54:10313–6. (d) Abdeldayem A, Raouf YS, Constantinescu SN, et al. Advances in covalent kinase inhibitors. Chem Soc Rev 2020;49:2617–87.
  • (a) Norman RA, Toader D, Ferguson AD. Structural approaches to obtain kinase selectivity. Trends Pharmacol Sci 2012;33:273–8. (b) Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000;351:95–105. (c) Müller S, Chaikuad A, Gray NS, Knapp S. The ins and outs of selective kinase inhibitor development. Nat Chem Biol 2015;11:818–21.
  • Liu Y, Han SJ, Liu WB, Stoltz BM. Catalytic enantioselective construction of quaternary stereocenters: assembly of key building blocks for the synthesis of biologically active molecules. Acc Chem Res 2015;48:740–51.
  • (a) Zask A, Murphy J, Ellestad GA. Biological stereoselectivity of atropisomeric natural products and drugs. Chirality 2013;25:265–74. (b) Porter J, Payne A, Whitcombe I, et al. Atropisomeric small molecule Bcl-2 ligands: Determination of bioactive conformation. Bioorg Med Chem Lett 2009;19:1767–72. (c) Xing L, Devadas B, Devraj RV, et al. Discovery and characterization of atropisomer PH-797804, a p38 MAP kinase inhibitor, as a clinical drug candidate. ChemMedChem 2012;7:273–80. (d) Smith DE, Marquez I, Lokensgard ME, et al. Exploiting atropisomerism to increase the target selectivity of kinase inhibitors. Angew Chem Int Ed Engl 2015;54:11754–9.
  • (a) Jiang J, Shen M, Thomas CJ, Boxer MB. Chiral kinase inhibitors. Curr Top Med Chem 2011;11:800–9. (b) Norman P. Evaluation of WO2011134971, chiral 1,6-napthyridine Syk kinase inhibitors. Expert Opin Ther Patents 2012;22:335–9. (c) Kitano Y, Suzuki T, Kawahara E, Yamazaki T. Synthesis and inhibitory activity of 4-alkynyl and 4-alkenylquinazolines: Identification of new scaffolds for potent EGFR tyrosine kinase inhibitors. Bioorg Med Chem Lett 2007;17:5863–7. (d) Bühler S, Goettert M, Schollmeyer D, et al. Chiral sulfoxides as metabolites of 2-thioimidazole-based p38α mitogen-activated protein kinase inhibitors: enantioselective synthesis and biological evaluation. J Med Chem 2011;54:3283–97. (e) Wu CH, Coumar MS, Chu CY, et al. Design and synthesis of tetrahydropyridothieno[2,3-d]pyrimidine scaffold based epidermal growth factor receptor (EGFR) kinase inhibitors: The role of side chain chirality and michael acceptor group for maximal potency. J Med Chem 2010;53:7316–26.
  • (a) Choi HG, Ren P, Adrian F, et al. A type-II kinase inhibitor capable of inhibiting the T315I “gatekeeper” mutant of Bcr-Abl. J Med Chem 2010;53:5439–48. (b) Nonami A, Sattler M, Weisberg E, et al. Identification of novel therapeutic targets in acute leukemias with NRAS mutations using a pharmacologic approach. Blood 2015;125:3133–43. (c) Cho H, Shin I, Ju E, et al. First SAR study for overriding NRAS mutant driven acute myeloid leukemia. J Med Chem 2018;61:8353–73.
  • (a) Whitby LR, Ando Y, Setola V, et al. Design, Synthesis, and validation of a β-turn mimetic library targeting protein-protein and peptide-receptor interactions. J Am Chem Soc 2011;133:10184–94. (b) Metrano AJ, Abascal NC, Mercado BQ, et al. Diversity of secondary structure in catalytic peptides with β-turn-biased sequences. J Am Chem Soc 2017;139:492–516. (c) Hata M, Marshall GR. Do benzodiazepines mimic reverse-turn structures? J Comput Aided Mol Des 2006;20:321–31. (d) Chauhan J, Chen SE, Fenstermacher KJ, et al. Synthetic, structural mimetics of the β-hairpin flap of HIV-1 protease inhibit enzyme function. Bioorg Med Chem 2015;23:7095–109. (e) Dörr AA, Lubell W. γTurn γ-Turn Mimicry with Benzodiazepinones and pyrrolobenzodiazepinones synthesized from a Common Amino ketone intermediate. Org Lett 2015;17:3592–5. (f) Peris G, Jakobsche CE, Miller SJ. Aspartate-catalyzed asymmetric epoxidation reactions. J Am Chem Soc 2007; 129:8710–1. (g) Lenci E, Trabocchi A. Peptidomimetic toolbox for drug discovery. Chem Soc Rev 2020;49:3262–77.
  • WaterMap finds the hydration sites in the binding site using MD simulation and calculates the enthalpy and entropy energies of each the hydration site.
  • (a) Spyrakis F, Ahmed MH, Bayden AS, et al. The roles of water in the protein matrix: a largely untapped resource for drug discovery. J Med Chem 2017;60:6781–827. (b) Robinson DD, Sherman W, Farid R. Understanding kinase selectivity through energetic analysis of binding site waters. ChemMedChem 2010;5:618–27. (c) Wang Y, Fu Q, Zhou Y, et al. Replacement of protein binding-site waters contributes to favorable halogen bond interactions. J Chem Inf Model 2019;59:3136–43. (d) Cappel D, Sherman W, Beuming T. Calculating water thermodynamics in the binding site of Proteins - Applications of WaterMap to Drug Discovery. Curr Top Med Chem 2017;17:2586–98. (e) Breiten B, Lockett MR, Sherman W, et al. Water networks contribute to enthalpy/entropy compensation in protein-ligand binding. J Am Chem Soc 2013;135:15579–84.
  • Ananthakrishnan AN, Kaplan GG, Ng SC. Changing global epidemiology of inflammatory bowel diseases: sustaining health care delivery into the 21st Century. Clin Gastroenterol Hepatol 2020;18:1252–60.
  • Giuffrida P, Sabatino AD. Targeting T cells in inflammatory bowel disease. Pharmacol Res 2020;159:105040.
  • Singh PK, Kashyap A, Silakari O. Exploration of the therapeutic aspects of Lck: a kinase target in inflammatory mediated pathological conditions. Biomed Pharmacother 2018;108:1565–71.
  • Rose WA, Sakamoto K, Leifer CA. Multifunctional role of dextran sulfate sodium for in vivo modeling of intestinal diseases. BMC Immunology 2012;13:41.
  • Schrödinger Release 2019-4: Prime. Schrödinger. New York, NY: LLC; 2019.
  • Schrödinger Release 2019-4: Glide. Schrödinger. New York, NY: LLC; 2019.
  • Schrödinger Release 2019-4: Desmond, Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2020. Maestro-Desmond Interoperability Tools, Schrödinger, LLC, New York, NY, 2019.
  • Schrödinger Release 2019-4: WaterMap. Schrödinger. New York, NY: LLC; 2019.