2,068
Views
2
CrossRef citations to date
0
Altmetric
Research Papers

sp2-Iminosugars targeting human lysosomal β-hexosaminidase as pharmacological chaperone candidates for late-onset Tay-Sachs disease

, , , , , ORCID Icon, , & ORCID Icon show all
Pages 1364-1374 | Received 14 Mar 2022, Accepted 28 Apr 2022, Published online: 16 May 2022

References

  • Wendeler M, Sandhoff K. Hexosaminidase assays. Glycoconj J 2009;26:1364–52.
  • Triggs-Raine B, Mahuran DJ, Gravel RA. Naturally occurring mutations in GM2 gangliosidosis: a compendium. Adv Genet 2001;44:199–224.
  • Mahuran DJ. The GM2 activator protein, its roles as a co-factor in GM2 hydrolysis and as a general glycolipid transport protein. Biochim Biophys Acta 1998;1393:1–18.
  • Gravel RA, Kaback MM, Proia RL, et al. The GM2 gangliosidoses, In: Scriver CR, Beaudet AL, Sly D WS. Valle, eds. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 2001:3827–3876.
  • Bley AE, Giannikopoulos OA, Hayden D, et al. Natural history of infantile GM2 gangliosidosis. Pediatrics 2011;128:e1233–1241.
  • Neudorfer O, Pastores GM, Zeng BJ, et al. Late-onset Tay-Sachs disease: phenotypic characterization and genotypic correlations in 21 affected patients. Genet Med 2005;7:119–23.
  • Sheth J, Mistri M, Datar C, et al. Expanding the spectrum of HEXA mutations in Indian patients with Tay-Sachs disease. Mol Genet Metab Rep 2014;1:425–30.
  • Leinekugel P, Michel S, Conzelmann E, Sandhoff K. Quantitative correlation between the residual activity of beta-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 1992;88:513–23.
  • Karumuthil-Melethil S, Kalburgi SN, Thompson P, et al. Novel vector design and hexosaminidase variant enabling self-complementary adeno-associated virus for the treatment of Tay-Sachs disease. Hum Gene Ther 2016;27:509–21.
  • Cachón-González MB, Wang SZ, Lynch A, et al. Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci USA 2006;103:10373–8.
  • Golebiowski D, van der Bom IMJ, Kwon CS, et al. Direct intracranial injection of AAVrh8 encoding monkey β-N-acetylhexosaminidase causes neurotoxicity in the primate brain. Hum Gene Ther 2017;28:510–22.
  • Choudhury SR, Hudry E, Maguire CA, et al. Viral vectors for therapy of neurologic diseases. Neuropharmacology 2017;120:63–80.
  • Leal AF, Benincore-Flórez E, Solano-Galarza D, et al. GM2 gangliosidoses: clinical features, pathophysiological aspects, and current therapies. Int J Mol Sci 2020;21:6213.
  • Cox TM. Lysosomal diseases and neuropsychiatry: opportunities to rebalance the mind. Front Mol Biosci 2020;7:177.
  • Dersh D, Iwamoto Y, Argon Y. Tay-Sachs disease mutations in HEXA target the α chain of hexosaminidase A to endoplasmic reticulum-associated degradation. Mol Biol Cell 2016;27:3813–27.
  • Iacono R, Minopoli N, Ferrara MC, et al. Carnitine is a pharmacological allosteric chaperone of the human lysosomal α-glucosidase. J Enzyme Inhib Med Chem 2021;36:2068–79.
  • Tran ML, Génisson Y, Ballereau S, Dehoux C. Second-generation pharmacological chaperones: beyond inhibitors. Molecules 2020;25:3145.
  • Porto C, Ferrara MC, Meli M, et al. Pharmacological enhancement of α-glucosidase by the allosteric chaperone N-acetylcysteine. Mol Ther 2012;20:2201–011.
  • Sánchez-Fernández EM, García Fernández JM, Ortiz Mellet C. Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: lessons from Gaucher, GM1-gangliosidosis and Fabry diseases. Chem Commun 2016;52:5497–515.
  • Parenti G, Andria G, Valenzano KJ. Pharmacological chaperone therapy: preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders. Mol Ther 2015;23:1138–48.
  • Platt FM. Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discovery 2018;17:133–50.
  • Tropak MB, Reid SP, Guiral M, et al. Pharmacological enhancement of beta-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff patients. J Biol Chem 2004;279:13478–87.
  • Li H, Marcelo F, Bello C, et al. Design and synthesis of acetamido tri- and tetra-hydroxyazepanes: potent and selective β-N-acetylhexosaminidase inhibitors. Bioorg Med Chem 2009;17:5589–604.
  • Blériot Y, Tran AT, Prencipe G, et al. Synthesis of 1,2-trans-2-acetamido-2-deoxyhomoiminosugars. Org Lett 2014;16:5516–9.
  • Steiner AJ, Schitter G, Stütz AE, et al. 2-Acetamino-1,2-dideoxynojirimycin-lysine hybrids as hexosaminidase inhibitors. Tetrahedron Asymmetry 2009;20:832–5.
  • Maegawa GHB, Tropak M, Buttner J, et al. Pyrimethamine as a potential pharmacological chaperone for late-onset forms of GM2 Gangliosidosis. J Biol Chem 2007;282:9150–61.
  • Tropak MB, Blanchard J, Withers SG, et al. High-throughput screening for human lysosomal beta-N-Acetyl hexosaminidase inhibitors acting as pharmacological chaperones. Chem Biol 2007;14:153–64.
  • Guo P, Chen Q, Liu T, et al. Development of unsymmetrical dyads as potent noncarbohydrate-based inhibitors against human β-N-Acetyl-d-hexosaminidase. ACS Med Chem Lett 2013;4:527–31.
  • Liu T, Guo P, Zhou Y, et al. A crystal structure-guided rational design switching non-carbohydrate inhibitors’ specificity between two β-GlcNAcase homologs. Sci Rep 2014;4:6188.
  • Colussi DJ, Jacobson MA. Patient-derived phenotypic high-throughput assay to identify small molecules restoring lysosomal function in Tay-Sachs disease. SLAS Discov 2019;24:295–303.
  • Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 2007;446:1017–22.
  • Roth C, Chan S, Offen WA, et al. Structural and functional insight into human O-GlcNAcase. Nat Chem Biol 2017;13:610–4.
  • Wang L, Bharti R, Kumar R, et al. Small molecule therapeutics for tauopathy in Alzheimer’s disease: walking on the path of most resistance. Eur J Med Chem 2021;209:112915.
  • Ho CW, Popat SD, Liu TD, et al. Development of GlcNAc-inspired iminocyclitiols as potent and selective N-acetyl-beta-hexosaminidase inhibitors. ACS Chem Biol 2010;5:489–97.
  • Rountree JSS, Butters TD, Wormald MR, et al. Design, synthesis, and biological evaluation of enantiomeric beta-N-acetylhexosaminidase inhibitors LABNAc and DABNAc as potential agents against Tay-Sachs and Sandhoff disease. ChemMedChem 2009;4:378–92.
  • Glawar AFG, Martínez RF, Ayers BJ, et al. Structural essentials for β-N-acetylhexosaminidase inhibition by amides of prolines, pipecolic and azetidine carboxylic acids. Org Biomol Chem 2016;14:10371–85.
  • Stubbs KA, Macauley MS, Vocadlo DJ. A selective inhibitor Gal-PUGNAc of human lysosomal beta-hexosaminidases modulates levels of the ganglioside GM2 in neuroblastoma cells. Angew Chem Int Ed Engl 2009;48:1300–3.
  • Amorelli B, Yang C, Rempel B, et al. N-Acetylhexosaminidase inhibitory properties of C-1 homologated GlcNAc- and GalNAc-thiazolines. Bioorg Med Chem Lett 2008;18:2944–7.
  • Osher E, Fattal-Valevski A, Sagie L, et al. Effect of cyclic, low dose pyrimethamine treatment in patients with late onset Tay Sachs: an open label, extended pilot study. Orphanet J Rare Dis 2015;10:45.
  • Rísquez-Cuadro R, García Fernández JM, Nierengarten JF, Ortiz Mellet C. Fullerene-sp2-iminosugar balls as multimodal ligands for lectins and glycosidases: a mechanistic hypothesis for the inhibitory multivalent effect. Chemistry 2013;19:16791–803.
  • Abellán Flos M, García Moreno MI, Ortiz Mellet C, et al. Potent glycosidase inhibition with heterovalent fullerenes: unveiling the binding modes triggering multivalent inhibition. Chemistry 2016;22:11450–60.
  • García-Moreno MI, Ortega-Caballero F, Rísquez-Cuadro R, et al. The impact of heteromultivalency in lectin recognition and glycosidase inhibition: an integrated mechanistic study. Chemistry 2017;23:6295–304.
  • Ortiz Mellet C, Nierengarten JF, García Fernández JM. Multivalency as an action principle in multimodal lectin recognition and glycosidase inhibition: a paradigm shift driven by carbon-based glyconanomaterials. J Mater Chem B 2017;5:6546–56.
  • Gueder N, Allan G, Telliez MS, et al. sp2 -Iminosugar α-glucosidase inhibitor 1-C-octyl-2-oxa-3-oxocastanospermine specifically affected breast cancer cell migration through Stim1, β1-integrin, and FAK signaling pathways. J Cell Physiol 2017;232:3631–40.
  • Sánchez-Fernández EM, Gonçalves-Pereira R, Rísquez-Cuadro R, et al. Influence of the configurational pattern of sp(2)-iminosugar pseudo N-, S-, O- and C-glycosides on their glycoside inhibitory and antitumor properties. Carbohydr Res 2016;429:113–22.
  • Allan G, Ouadid-Ahidouch G, Sánchez-Fernández EM, et al. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells. PLoS One 2013;8:e76411.
  • Schaeffer E, Sánchez-Fernández EM, Goncalves-Pereira R, et al. sp2-Iminosugar glycolipids as inhibitors of lipopolysaccharide-mediated human dendritic cell activation in vitro and of acute inflammation in mice in vivo. Eur J Med Chem 2019;169:111–20.
  • Sánchez-Fernández EM, García-Moreno MI, Arroba AI, et al. Synthesis of polyfluoroalkyl sp2-iminosugar glycolipids and evaluation of their immunomodulatory properties towards anti-tumor, anti-leishmanial and anti-inflammatory therapies. Eur J Med Chem 2019;182:111604.
  • Herrera-González I, Sánchez-Fernández EM, Sau A, et al. Stereoselective synthesis of iminosugar 2-deoxy(thio)glycosides from bicyclic iminoglycal carbamates promoted by cerium(IV) ammonium nitrate and cooperative Brønsted acid-type organocatalysis. J Org Chem 2020;85:503–5047.
  • Sevšek A, Čelan M, Erjavec B, et al. Bicyclic isoureas derived from 1-deoxynojirimycin are potent inhibitors of β-glucocerebrosidase. Org Biomol Chem 2016;14:8670–3.
  • Mena-Barragán T, García-Moreno MI, Nanba E, et al. Inhibitor versus chaperone behaviour of D-fagomine, DAB and LAB sp(2)-iminosugar conjugates against glycosidases: a structure-activity relationship study in Gaucher fibroblasts. Eur J Med Chem 2016;121:880–91.
  • Sánchez-Fernández EM, Álvarez E, Ortiz Mellet C, García Fernández JM. Synthesis of multibranched australine derivatives from reducing castanospermine analogues through the Amadori rearrangement of gem-diamine intermediates: selective Inhibitors of β-Glucosidase. J Org Chem 2014;79:11722–8.
  • García-Moreno MI, Ortiz Mellet C, García Fernández JM. Synthesis of calystegine B2, B3, and B4 analogues: mapping the glycosidase inhibitory activity relationships in the 1-deoxy-6-oxacalystegine series. Eur J Org Chem 2004;2004:1803–19.
  • Tiscornia G, Lorenzo Vivas E, Matalonga E, et al. Neuronopathic Gaucher’s disease: induced pluripotent stem cells for disease modelling and testing chaperone activity of small compounds. Hum Mol Genet 2013;22:633–45.
  • de la Mata M, Cotán D, Oropesa-Avila M, et al. Pharmacological chaperones and coenzyme Q10 treatment improves mutant β-glucocerebrosidase activity and mitochondrial function in neuronopathic forms of Gaucher disease. Sci Rep 2015;5:10903.
  • García-Moreno MI, de la Mata M, Sánchez Fernández EM, et al. Fluorinated chaperone-β-cyclodextrin formulations for β-Glucocerebrosidase activity enhancement in neuronopathic Gaucher disease. J Med Chem 2017;60:1829–42.
  • Mena-Barragán T, Narita A, Matias D, et al. pH-Responsive pharmacological chaperones for rescuing mutant glycosidases. Angew Chem Int Ed Engl 2015;54:11696–700.
  • Yu Y, Mena-Barragán T, Higaki K, et al. Molecular basis of 1-deoxygalactonojirimycin arylthiourea binding to human α-galactosidase A: pharmacological chaperoning efficacy on Fabry disease mutants. ACS Chem Biol 2014;9:1460–9.
  • Suzuki H, Ohto U, Higaki K, et al. Structural basis of pharmacological chaperoning for human β-galactosidase. J Biol Chem 2014;289:14560–8.
  • Takai T, Higaki K, Aguilar-Moncayo M, et al. A bicyclic 1-deoxygalactonojirimycin derivative as a novel pharmacological chaperone for GM1 gangliosidosis. Mol Ther 2013;21:526–32.
  • Rísquez-Cuadro R, Matsumoto R, Ortega-Caballero F, et al. Pharmacological chaperones for the treatment of α-mannosidosis. J Med Chem 2019;62:5832–43.
  • de la Fuente A, Rísquez-Cuadro R, Verdaguer X, et al. Efficient stereoselective synthesis of 2-acetamido-1,2-dideoxyallonojirimycin (DAJNAc) and sp(2)-iminosugar conjugates: novel hexosaminidase inhibitors with discrimination capabilities between the mature and precursor forms of the enzyme. Eur J Med Chem 2016;121:926–38.
  • de la Fuente A, Mena-Barragán T, Farrar-Tobar RA, et al. Stereoselective synthesis of 2-acetamido-1,2-dideoxynojirimycin (DNJNAc) and ureido-DNJNAc derivatives as new hexosaminidase inhibitors. Org Biomol Chem 2015;13:6500–10.
  • Glawar AFG, Best D, Ayers BJ, et al. Scalable syntheses of both enantiomers of DNJNAc and DGJNAc from glucuronolactone: the effect of N-alkylation on hexosaminidase inhibition. Chem Eur J 2012;18:9341–59.
  • Grabosch C, Kleinert M, Lindhorst TK. Glyco-SAMs by “dual click”: thiourea-bridged glyco-OEG azides for cycloaddition on surfaces. Synthesis 2010; 2010:828–36.
  • Carbajo-Gordillo AI, Jiménez Blanco JL, Benito JM, et al. Click synthesis of size- and shape-tunable star polymers with functional macrocyclic cores for synergistic DNA complexation and delivery. Biomacromolecules 2020;21:5173–88.
  • Abbas SY, Al-Harbi RAK, Sh El-Sharief MAM. Synthesis and anticancer activity of thiourea derivatives bearing a benzodioxole moiety with EGFR inhibitory activity, apoptosis assay and molecular docking study. Eur J Med Chem 2020;198:112363.
  • Doğan SD, Gündüz MG, Doğan H, et al. Design and synthesis of thiourea-based derivatives as Mycobacterium tuberculosis growth and enoyl acyl carrier protein reductase (InhA) inhibitors. Eur J Med Chem 2020;198:112363.
  • He ZX, Huo JL, Gong YP, An Q, et al. Design, synthesis and biological evaluation of novel thiosemicarbazone-indole derivatives targeting prostate cancer cells. Eur J Med Chem 2021;210:112970.
  • Nurieva EV, Alexeev AA, Zefirova ON. Cyclic isothiourea in drug design. Chem Heterocycl Comp 2021;57:889–99.
  • Mena-Barragán T, García-Moreno MI, Sevšek A, et al. Probing the Inhibitor versus chaperone properties of sp2-Iminosugars towards human β-glucocerebrosidase: a picomolar chaperone for Gaucher disease. Molecules 2018;23:927.
  • Maier T, Strater N, Schuette CG, et al. The X-ray crystal structure of human beta-hexosaminidase B provides new insights into Sandhoff disease. J Mol Biol 2003;328:669–81.
  • Lemieux MJ, Mark BL, Cherney MM, et al. Crystallographic structure of human beta-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis. J Mol Biol 2006;359:913–29.
  • Bateman KS, Cherney MM, Mahuran DJ, Tropak M, et al. Crystal structure of β-hexosaminidase B in complex with pyrimethamine, a potential pharmacological chaperone. J Med Chem 2011;54:1421–9.
  • Lieberman RL, D’aquino JA, Ringe D, Petsko DA. The effects of pH and iminosugar pharmacological chaperones on lysosomal glycosidase structure and stability. Biochemistry 2009;48:4816–27.
  • Nödling AR, Jakab G, Schreiner PR, Hilt G. 31P NMR spectroscopically quantified hydrogen-bonding strength of thioureas and their catalytic activity in Diels–Alder reactions. Eur J Org Chem 2014; 2014:6394–8.
  • Nickisch R, Gabrielsen SM, Meier MAR. Novel access to known and unknown thiourea catalyst via a multicomponent-reaction approach. ChemistrySelect 2020;5:11915–20.
  • Aguilar M, Gloster TM, García-Moreno MI, et al. Molecular basis for beta-glucosidase inhibition by ring-modified calystegine analogues. ChemBioChem 2008;9:2612–8.
  • Aguilar-Moncayo M, Gloster TM, Turkenburg JP M, García-Moreno MI, et al. Glycosidase inhibition by ring-modified castanospermine analogues: tackling enzyme selectivity by inhibitor tailoring. Org Biomol Chem 2009;7:2738–47.
  • Brumshtein B, Aguilar-Moncayo M, Juan M. Benito JM, et al. Cyclodextrin-mediated crystallization of acid β-glucosidase in complex with amphiphilic bicyclic nojirimycin analogues. Org Biomol Chem 2011;9:4160–7.
  • González-Cuesta M, Sidhu P, Ashmus RA, et al. Bicyclic picomolar OGA inhibitors enable chemoproteomic mapping of its endogenous post-translational modifications. J Am Chem Soc 2022;144:832–44.
  • Trott O, Olson AJ. Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–61.
  • Sastry GM, Adzhigirey M, Day T, et al. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 2013;27:221–34.