4,427
Views
7
CrossRef citations to date
0
Altmetric
Review

Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents

, , , , , , & show all
Pages 1437-1453 | Received 12 Dec 2021, Accepted 02 May 2022, Published online: 19 May 2022

References

  • Wells JA, McClendon CL. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 2007;450:1437–9.
  • Gu S, Cui D, Chen X, et al. PROTACs: an emerging targeting technique for protein degradation in drug discovery. Bioessays 2018;40:e1700247.
  • Yang J, Li Y, Aguilar A, et al. Simple structural modifications converting a bona fide MDM2 PROTAC degrader into a molecular glue molecule: a cautionary tale in the design of PROTAC degraders. J Med Chem 2019;62:9471–87.
  • Toure M, Crews CM. Small-molecule PROTACS: new approaches to protein degradation. Angew Chem Int Ed Engl 2016;55:1966–73.
  • Kathleen MS, Kyung BK, Akiko K, et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. P Nant Acad SCI USA 2001;98:8554–9.
  • Liang D, Yu Y, Ma Z. Novel strategies targeting bromodomain-containing protein 4 (BRD4) for cancer drug discovery. Eur J Med Chem 2020;200:112426.
  • Drummond ML, Williams CI. In silico modeling of PROTAC-mediated ternary complexes: validation and application. J Chem Inf Model 2019;59:1634–44.
  • An S, Fu L. Small-molecule PROTACs: an emerging and promising approach for the development of targeted therapy drugs. EBioMedicine 2018;36:553–62.
  • Wang C, Zhang Y, Wang J, et al. VHL-based PROTACs as potential therapeutic agents: recent progress and perspectives. Eur J Med Chem 2022;227:113906.
  • Wang C, Zhang Y, Wu Y, et al. Developments of CRBN-based PROTACs as potential therapeutic agents. Eur J Med Chem 2021;225:113749.
  • Farnaby W, Koegl M, Roy MJ, et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat Chem Biol 2019;15:672–80.
  • Martin-Acosta P, Xiao X. PROTACs to address the challenges facing small molecule inhibitors. Eur J Med Chem 2021;210:112993.
  • Zeng S, Huang W, Zheng X, et al. Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: recent progress and future challenges. Eur J Med Chem 2021;210:112981.
  • Sakamoto KM, Kim KB, Kumagai A, et al. PROTACS: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A 2001;98:8554–9.
  • Schneekloth JS Jr, Fonseca FN, Koldobskiy M, et al. Chemical genetic control of protein levels: selective in vivo targeted degradation. J Am Chem Soc 2004;126:3748–54.
  • Schneekloth AR, Pucheault M, Tae HS, et al. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg Med Chem Lett 2008;18:5904–8.
  • Hughes SJ, Testa A, Thompson N, et al. The rise and rise of protein degradation: opportunities and challenges ahead. Drug Discov Today 2021;21:1359–6446.
  • Itoh Y, Ishikawa M, Naito M, et al. Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J Am Chem Soc 2010;132:5820–6.
  • Okuhira K, Ohoka N, Sai K, et al. Specific degradation of CRABP-II via cIAP1-mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein. FEBS Lett 2011;585:1147–52.
  • Okuhira K, Demizu Y, Hattori T, et al. Development of hybrid small molecules that induce degradation of estrogen receptor-alpha and necrotic cell death in breast cancer cells. Cancer Sci 2013;104:1492–8.
  • Buckley DL, Van Molle I, Gareiss PC, et al. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J Am Chem Soc 2012;134:4465–8.
  • Salvesen GS, Duckett CS. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 2002;3:401–10.
  • Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev 1999;13:239–52.
  • Birnbaum MJ, Clem RJ, Miller LK. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol 1994;68:2521–8.
  • Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 1993;67:2168–74.
  • Ndubaku C, Cohen F, Varfolomeev E, et al. Targeting inhibitor of apoptosis proteins for therapeutic intervention. Future Med Chem 2009;1:1509–25.
  • Yang L, Cao Z, Yan H, et al. Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Canc Res 2003;63:6815–24.
  • Tamm I, Kornblau SM, Segall H, et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Canc Res 2000;6:1796–803.
  • Ma Z, Ji Y, Yu Y, et al. Specific non-genetic IAP-based protein erasers (SNIPERs) as a potential therapeutic strategy. Eur J Med Chem 2021;216:113247.
  • Naito M, Ohoka N, Shibata N. SNIPERs-Hijacking IAP activity to induce protein degradation. Drug Discov Today Technol 2019;31:35–42.
  • Ishikawa M, Tomoshige S, Demizu Y, et al. Selective degradation of target proteins by chimeric small-molecular drugs, PROTACs and SNIPERs. Pharmaceuticals (Basel) 2020;13:74.
  • Naito M, Ohoka N, Shibata N, et al. Targeted protein degradation by chimeric small molecules, PROTACs and SNIPERs. Front Chem 2019;7:849.
  • Scott DE, Bayly AR, Abell C, et al. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov 2016;15:533–50.
  • Cong H, Xu L, Wu Y, et al. Inhibitor of apoptosis protein (IAP) antagonists in anticancer agent discovery: current status and perspectives. J Med Chem 2019;62:5750–72.
  • Li L, Thomas RM, Suzuki H, et al. A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 2004;305:1471–4.
  • Sekine K, Takubo K, Kikuchi R, et al. Small molecules destabilize cIAP1 by activating auto-ubiquitylation. J Biol Chem 2008;283:8961–8.
  • Weng G, Shen C, Cao D, et al. PROTAC-DB: an online database of PROTACs. Nucleic Acids Res 2021;49:1381–7.
  • Bricelj A, Steinebach C, Kuchta R, et al. E3 ligase ligands in successful PROTACs: an overview of syntheses and linker attachment points. Front Chem 2021;9:707317.
  • Campos C, Sotomayor P, Jerez D, et al. Exercise and prostate cancer: from basic science to clinical applications. Prostate 2018;78:639–45.
  • Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev 2004;25:276–308.
  • Shibata N, Nagai K, Morita Y, et al. Development of protein degradation inducers of androgen receptor by conjugation of androgen receptor ligands and inhibitor of apoptosis protein ligands. J Med Chem 2018;61:543–75.
  • Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014;15:49–63.
  • Tse C, Shoemaker AR, Adickes J, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 2008;68:3421–8.
  • Zhang X, He Y, Zhang P, et al. Discovery of IAP-recruiting BCL-XL PROTACs as potent degraders across multiple cancer cell lines. Eur J Med Chem 2020;199:112397.
  • Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 2005;5:172–83.
  • Lai AC, Toure M, Hellerschmied D, et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew Chem Int Ed Engl 2016;55:807–10.
  • Demizu Y, Shibata N, Hattori T, et al. Development of BCR-ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand. Bioorg Med Chem Lett 2016;26:4865–9.
  • Shibata N, Miyamoto N, Nagai K, et al. Development of protein degradation inducers of oncogenic BCR-ABL protein by conjugation of ABL kinase inhibitors and IAP ligands. Cancer Sci 2017;108:1657–66.
  • Shimokawa K, Shibata N, Sameshima T, et al. Targeting the allosteric site of oncoprotein bcr-abl as an alternative strategy for effective target protein degradation. ACS Med Chem Lett 2017;8:1042–7.
  • Zengerle M, Chan KH, Ciulli A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem Biol 2015;10:1770–7.
  • Kounde CS, Shchepinova MM, Saunders CN, et al. A caged E3 ligase ligand for PROTAC-mediated protein degradation with light. Chem Commun (Camb) 2020;56:5532–5.
  • Ohoka N, Ujikawa O, Shimokawa K, et al. Different degradation mechanisms of inhibitor of apoptosis proteins (IAPs) by the specific and nongenetic IAP-dependent protein eraser (SNIPER). Chem Pharm Bull (Tokyo) 2019;67:203–9.
  • Pan ZY, Scheerens H, Li SJ, et al. Discovery of selective irreversible inhibitors for Bruton's tyrosine kinase. ChemMedChem 2007;2:58–61.
  • Sun Y, Zhao X, Ding N, et al. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res 2018;28:779–81.
  • Sun Y, Ding N, Song Y, et al. Degradation of Bruton's tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas. Leukemia 2019;33:2105–10.
  • Zorba A, Nguyen C, Xu Y, et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci U S A 2018;115:7285–92.
  • Schiemer J, Horst R, Meng Y, et al. Snapshots and ensembles of BTK and cIAP1 protein degrader ternary complexes. Nat Chem Biol 2021;17: 152–60.
  • Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov 2016;6:353–67.
  • Walker AJ, Wedam S, Amiri-Kordestani L, et al. FDA approval of palbociclib in combination with fulvestrant for the treatment of hormone receptor-positive, HER2-negative metastatic breast cancer. Clin Cancer Res 2016;22:4968–72.
  • Steinebach C, Ng YLD, Sosic I, et al. Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders. Chem Sci 2020;11:3474–86.
  • Dominici MD, Porazzi P, Xiao Y, et al. Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and-independent effects by CDK6-specific PROTACs. Blood 2020;135:1560–73.
  • Su S, Yang Z, Gao H, et al. Potent and preferential degradation of cdk6 via proteolysis targeting chimera degraders. J Med Chem 2019;62:7575–82.
  • Anderson NA, Cryan J, Ahmed A, et al. Selective CDK6 degradation mediated by cereblon, VHL, and novel IAP-recruiting PROTACs. Bioorg Med Chem Lett 2020;30:127106.
  • Itoh Y, Ishikawa M, Kitaguchi R, et al. Development of target protein-selective degradation inducer for protein knockdown. Bioorg Med Chem 2011;19:3229–41.
  • Itoh Y, Ishikawa M, Kitaguchi R, et al. Double protein knockdown of cIAP1 and CRABP-II using a hybrid molecule consisting of ATRA and IAPs antagonist. Bioorg Med Chem Lett 2012;22:4453–577.
  • Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007;7:169–81.
  • Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005;5:341–54.
  • Burslem GM, Smith BE, Lai AC, et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem Biol 2018;25:67–77.
  • Zhang X, Xu F, Tong L, et al. Design and synthesis of selective degraders of EGFRL858R/T790M mutant. Eur J Med Chem 2020;192:112199.
  • Georgiadis D, Mpakali A, Koumantou D, et al. Inhibitors of ER aminopeptidase 1 and 2: from design to clinical application. Curr Med Chem 2019;26:2715–29.
  • Demizu Y, Misawa T, Nagakubo T, et al. Structural development of stabilized helical peptides as inhibitors of estrogen receptor (ER)-mediated transcription. Bioorg Med Chem 2015;23:4132–8.
  • Itoh Y, Kitaguchi R, Ishikawa M, et al. Design, synthesis and biological evaluation of nuclear receptor-degradation inducers. Bioorg Med Chem 2011;19:6768–78.
  • Demizu Y, Okuhira K, Motoi H, et al. Design and synthesis of estrogen receptor degradation inducer based on a protein knockdown strategy. Bioorg Med Chem Lett 2012;22:1793–6.
  • Demizu Y, Ohoka N, Nagakubo T, et al. Development of a peptide-based inducer of nuclear receptors degradation. Bioorg Med Chem Lett 2016;26:2655–8.
  • Ohoka N, Okuhira K, Ito M, et al. In vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs). J Biol Chem 2017;292:4556–70.
  • Ohoka N, Morita Y, Nagai K, et al. Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor α degradation. J Biol Chem 2018;293:6776–90.
  • Disch JS, Duffy JM, Lee ECY, et al. Bispecific estrogen receptor α degraders incorporating novel binders identified using DNA-encoded chemical library screening. J Med Chem 2021;64:5049–66.
  • Yokoo H, Ohoka N, Takyo M, et al. Peptide stapling improves the sustainability of a peptide-based chimeric molecule that induces targeted protein degradation. Int J Mol Sci 2021;22:8772.
  • Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007;26:5541–52.
  • Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 2014;13:673–91.
  • Cao J, Zhao W, Liu Q, et al. Development of a Bestatin-SAHA hybrid with dual inhibitory activity against APN and HDAC. Molecules 2020;25:4991.
  • O'Shea JJ, Schwartz DM, Villarino AV, et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2015;66:311–28.
  • Field SD, Arkin J, Li J, et al. Selective downregulation of JAK2 and JAK3 by an ATP-competitive pan-JAK inhibitor. ACS Chem Biol 2017;12:1183–7.
  • Shah RR, Redmond JM, Mihut A, et al. Hi-JAK-ing the ubiquitin system: the design and physicochemical optimisation of JAK PROTACs. Bioorg Med Chem 2020;28:115326.
  • Ohoka N, Misawa T, Kurihara M, et al. Development of a peptide-based inducer of protein degradation targeting NOTCH1. Bioorg Med Chem Lett 2017;27:4985–8.
  • Moellering RE, Cornejo M, Davis TN, et al. Direct inhibition of the NOTCH transcription factor complex. Nature 2009;462:182–8.
  • Huryn DM, Kornfilt DJP, Wipf P. p97: an emerging target for cancer, neurodegenerative diseases, and viral infections. J Med Chem 2020;63:1892–907.
  • Barthelme D, Sauer RT. Origin and functional evolution of the Cdc48/p97/VCP AAA + protein unfolding and remodeling machine. J Mol Biol 2016;428:1861–9.
  • Donovan KA, Ferguson FM, Bushman JW, et al. Mapping the degradable kinome provides a resource for expedited degrader development. Cell 2020;183:1714–31.
  • Gergely F, Karlsson C, Still I, et al. The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc Natl Acad Sci U S A 2000;97:14352–7.
  • LeRoy PJ, Hunter JJ, Hoar KM, et al. Localization of human TACC3 to mitotic spindles is mediated by phosphorylation on Ser558 by Aurora A: a novel pharmacodynamic method for measuring Aurora A activity. Cancer Res 2007;67:5362–70.
  • Ohoka N, Nagai K, Hattori T, et al. Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis 2014;5:e1513.
  • Rittchen S, Heinemann A. Therapeutic potential of hematopoietic prostaglandin D2 synthase in allergic inflammation. Cells 2019;8:619.
  • Aritake K, Kado Y, Inoue T, et al. Structural and functional characterization of HQL-79, an orally selective inhibitor of human hematopoietic prostaglandin D synthase. J Biol Chem 2006;281:15277–86.
  • Yokoo H, Shibata N, Naganuma M, et al. Development of a hematopoietic prostaglandin D synthase-degradation inducer. ACS Med Chem Lett 2021;12:236–41.
  • Chaudhary D, Robinson S, Romero DL. Recent advances in the discovery of small molecule inhibitors of interleukin-1 receptor-associated kinase 4 (IRAK4) as a therapeutic target for inflammation and oncology disorders. J Med Chem 2015;58:96–110.
  • Zhang J, Fu L, Shen B, et al. Assessing IRAK4 functions in ABC DLBCL by IRAK4 kinase inhibition and protein degradation. Cell Chem Biol 2020;27:1500–9.
  • Nunes J, McGonagle GA, Eden J, et al. Targeting IRAK4 for degradation with PROTACs. ACS Med Chem Lett 2019;10:1081–5.
  • Jensen S, Seidelin JB, LaCasse EC, et al. SMAC mimetics and RIPK inhibitors as therapeutics for chronic inflammatory diseases. Sci Signal 2020;13:8295.
  • Hyun S, Shin D. Chemical-mediated targeted protein degradation in neurodegenerative diseases. Life(Basel) 2021;11:607.
  • Mares A, Miah AH, Smith IED, et al. Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2. Commun Biol 2020;3:140.
  • Miah AH, Smith IED, Rackham M, et al. Optimization of a series of RIPK2 PROTACs. J Med Chem 2021;64:12978–3003.
  • Reiner A, Dragatsis I, Dietrich P. Genetics and neuropathology of Huntington's disease. Int Rev Neurobiol 2011;98:325–72.
  • Tomoshige S, Nomura S, Ohgane K, et al. Discovery of small molecules that induce the degradation of Huntingtin. Angew Chem Int Ed Engl 2017;56:11530–3.
  • Schafer PH, Parton A, Capone L, et al. Apremilast is a selective PDE4 inhibitor with regulatory effects on innate immunity. Cell Signal 2014;26:2016–29.
  • Bhat A, Ray B, Mahalakshmi AM, et al. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol Res 2020;160:105078.
  • Tsukumo Y, Tsuji G, Yokoo H, et al. Protocols for synthesis of SNIPERs and the methods to evaluate the anticancer effects. Methods Mol Biol 2021;2365:331–47.
  • Wang KLiF, Cao WB, Lv XX, et al. TRIB3 promotes APL progression through stabilization of the oncoprotein PML-RARα and inhibition of p53-mediated senescence. Cancer Cell 2017;31:697–710.
  • Lo-Coco F, Hasan SK. Understanding the molecular pathogenesis of acute promyelocytic leukemia. Best Pract Res Clin Haematol 2014;27:3–9.