3,880
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Proteolysis-targeting chimaeras (PROTACs) as pharmacological tools and therapeutic agents: advances and future challenges

, , , , &
Pages 1667-1693 | Received 21 Feb 2022, Accepted 08 May 2022, Published online: 14 Jun 2022

References

  • Gadd MS, Testa A, Lucas X, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol 2017;13:1667–21.
  • An S, Fu L. Small-molecule PROTACs: an emerging and promising approach for the development of targeted therapy drugs. EBioMedicine 2018;36:553–62.
  • Drummond ML, Williams CI. In silico modeling of PROTAC-mediated ternary complexes: validation and application. J Chem Inf Model 2019;59:1634–44.
  • Wang P, Zhou J. Proteolysis targeting chimera (PROTAC): a paradigm-shifting approach in small molecule drug discovery. Curr Top Med Chem 2018;18:1354–6.
  • Ma Z, Ji Y, Yu Y, et al. Specific non-genetic IAP-based protein erasers (SNIPERs) as a potential therapeutic strategy. Eur J Med Chem 2021;216:113247.
  • He S, Dong G, Cheng J, et al. Strategies for designing proteolysis targeting chimaeras (PROTACs). Med Res Rev 2022;42:1280–342.
  • Wang C, Zhang Y, Wang J, et al. VHL-based PROTACs as potential therapeutic agents: recent progress and perspectives. Eur J Med Chem 2022;227:113906.
  • Wang C, Zhang Y, Wu Y, et al. Developments of CRBN-based PROTACs as potential therapeutic agents. Eur J Med Chem 2021;225:113749.
  • Konstantinidou M, Li J, Zhang B, et al. PROTACs - a game-changing technology. Expert Opin Drug Discov 2019;14:1255–68.
  • Schapira M, Calabrese MF, Bullock AN, et al. Targeted protein degradation: expanding the toolbox. Nat Rev Drug Discov 2019;18:949–63.
  • Nowak RP, DeAngelo SL, Buckley D, et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat Chem Biol 2018;14:706–14.
  • Zeng S, Huang W, Zheng X, et al. Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: recent progress and future challenges. Eur J Med Chem 2021;210:112981.
  • Martín-Acosta P, Xiao X. PROTACs to address the challenges facing small molecule inhibitors. Eur J Med Chem 2021;210:112993.
  • Toure M, Crews CM. Small-Molecule PROTACS: new approaches to protein degradation. Angew Chem Int Ed Engl 2016;55:1966–73.
  • Gu S, Cui D, Chen X, et al. PROTACs: an emerging targeting technique for protein degradation in drug discovery. Bioessays 2018;40:e1700247.
  • Nalawansha DA, Crews CM. PROTACs: an emerging therapeutic modality in precision medicine. Cell Chem Biol 2020;27:998–1014.
  • Sakamoto KM, Kim KB, Kumagai A, et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA 2001;98:8554–9.
  • Röth S, Fulcher LJ, Sapkota GP. Advances in targeted degradation of endogenous proteins. Cell Mol Life Sci 2019;76:2761–77.
  • Yang J, Li Y, Aguilar A, et al. Simple structural modifications converting a bona fide MDM2 PROTAC degrader into a molecular glue molecule: a cautionary tale in the design of PROTAC degraders. J Med Chem 2019;62:9471–87.
  • Bai L, Zhou H, Xu R, et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 2019;36:498–511.
  • Smith BE, Wang SL, Jaime-Figueroa S, et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun 2019;10:131.
  • Burslem GM, Smith BE, Lai AC, et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem Biol 2018;25:67–77.
  • Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 2005;5:172–83.
  • Burslem GM, Schultz AR, Bondeson DP, et al. Targeting BCR-ABL1 in chronic myeloid leukemia by PROTAC-mediated targeted protein degradation. Cancer Res 2019;79:4744–53.
  • Sun Y, Zhao X, Ding N, et al. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res 2018;28:779–81.
  • Ren C, Sun N, Kong Y, et al. Structure-based discovery of SIAIS001 as an oral bioavailability ALK degrader constructed from Alectinib. Eur J Med Chem 2021;217:113335.
  • Kang CH, Lee DH, Lee CO, et al. Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC). Biochem Biophys Res Commun 2018;505:542–7.
  • Sun N, Ren C, Kong Y, et al. Development of a Brigatinib degrader (SIAIS117) as a potential treatment for ALK positive cancer resistance. Eur J Med Chem 2020;193:112190.
  • Olson CM, Jiang B, Erb MA, et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol 2018;14:163–70.
  • Wang C, Zhang Y, Xing D, et al. PROTACs technology for targeting non-oncoproteins: advances and perspectives. Bioorg Chem 2021;114:105109.
  • Sun X, Gao H, Yang Y, et al. PROTACs: great opportunities for academia and industry. Signal Transduct Target Ther 2019;4:64.
  • Bondeson DP, Mares A, Smith IE, et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol 2015;11:611–7.
  • Jellinger KA. Neuropathological aspects of Alzheimer disease, Parkinson disease and frontotemporal dementia. Neurodegener Dis 2008;5:118–21.
  • Garber K. The PROTAC gold rush. Nat Biotechnol 2022;40:12–6.
  • Mullard A. Targeted protein degraders crowd into the clinic. Nat Rev Drug Discov 2021;20:247–50.
  • Campos C, Sotomayor P, Jerez D, et al. Exercise and prostate cancer: from basic science to clinical applications. Prostate 2018;78:639–45.
  • Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev 2004;25:276–308.
  • Kahn B, Collazo J, Kyprianou N. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int J Biol Sci 2014;10:588–95.
  • Abbasi A, Movahedpour A, Amiri A, et al. Darolutamide as a second-generation androgen receptor inhibitor in the treatment of prostate cancer. Curr Mol Med 2021;21:332–46.
  • Scott DE, Rooney TPC, Bayle ED, et al. Systematic investigation of the permeability of androgen receptor PROTACs. ACS Med Chem Lett 2020;11:1539–47.
  • Takwale AD, Jo SH, Jeon YU, et al. Design and characterization of cereblon-mediated androgen receptor proteolysis-targeting chimeras. Eur J Med Chem 2020;208:112769.
  • Chen L, Han L, Mao S, et al. Discovery of A031 as effective proteolysis targeting chimera (PROTAC) androgen receptor (AR) degrader for the treatment of prostate cancer. Eur J Med Chem 2021;216:113307.
  • Kim GY, Song CW, Yang YS, et al. Chemical degradation of androgen receptor (AR) using bicalutamide analog-thalidomide PROTACs. Molecules 2021;26:2525.
  • Liang JJ, Xie H, Yang RH, et al. Designed, synthesized and biological evaluation of proteolysis targeting chimeras (PROTACs) as AR degraders for prostate cancer treatment. Bioorg Med Chem 2021;45:116331.
  • Xiang W, Zhao L, Han X, et al. Discovery of ARD-2585 as an exceptionally potent and orally active PROTAC degrader of androgen receptor for the treatment of advanced prostate cancer. J Med Chem 2021;64:13487–509.
  • Han X, Zhao L, Xiang W, et al. Strategies toward discovery of potent and orally bioavailable proteolysis targeting chimera degraders of androgen receptor for the treatment of prostate cancer. J Med Chem 2021;64:12831–54.
  • Salami J, Alabi S, Willard RR, et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun Biol 2018;1:100.
  • Han X, Wang C, Qin C, et al. Discovery of ARD-69 as a highly potent proteolysis targeting chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer. J Med Chem 2019;62:941–64.
  • Han X, Zhao L, Xiang W, et al. Discovery of highly potent and efficient PROTAC degraders of androgen receptor (AR) by employing weak binding affinity VHL E3 ligase ligands. J Med Chem 2019;62:11218–31.
  • Zhao L, Han X, Lu J, et al. A highly potent PROTAC androgen receptor (AR) degrader ARD-61 effectively inhibits AR-positive breast cancer cell growth in vitro and tumor growth in vivo. Neoplasia 2020;22:522–32.
  • Lee GT, Nagaya N, Desantis J, et al. Effects of MTX-23, a novel PROTAC of androgen receptor splice variant-7 and androgen receptor, on CRPC resistant to second-line antiandrogen therapy. Mol Cancer Ther 2021;20:490–9.
  • Bhumireddy A, Bandaru NVMR, Raghurami Reddy B, et al. Design, synthesis, and biological evaluation of phenyl thiazole-based AR-V7 degraders. Bioorg Med Chem Lett 2022;55:128448.
  • Shibata N, Nagai K, Morita Y, et al. Development of protein degradation inducers of androgen receptor by conjugation of androgen receptor ligands and inhibitor of apoptosis protein ligands. J Med Chem 2018;61:543–75.
  • Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014;15:49–63.
  • Tse C, Shoemaker AR, Adickes J, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 2008;68:3421–8.
  • He Y, Zhang X, Chang J, et al. Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun 2020;11:1996.
  • Zhang X, Thummuri D, Liu X, et al. Discovery of PROTAC BCL-XL degraders as potent anticancer agents with low on-target platelet toxicity. Eur J Med Chem 2020;192:112186.
  • Khan S, Zhang X, Lv D, et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat Med 2019;25:1938–47.
  • Chung CW, Dai H, Fernandez E, et al. Structural insights into PROTAC-mediated degradation of Bcl-xL. ACS Chem Biol 2020;15:2316–23.
  • Pal P, Thummuri D, Lv D, et al. Discovery of a novel BCL-XL PROTAC degrader with enhanced BCL-2 inhibition. J Med Chem 2021;64:14230–46.
  • Zhang X, He Y, Zhang P, et al. Discovery of IAP-recruiting BCL-XL PROTACs as potent degraders across multiple cancer cell lines. Eur J Med Chem 2020;199:112397.
  • Clark PG, Vieira LC, Tallant C, et al. LP99: discovery and synthesis of the first selective BRD7/9 bromodomain inhibitor. Angew Chem Int Ed Engl 2015;54:6217–21.
  • Remillard D, Buckley DL, Paulk J, et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew Chem Int Ed Engl 2017;56:5738–43.
  • Goracci L, Desantis J, Valeri A, et al. Understanding the metabolism of proteolysis targeting chimeras (PROTACs): the next step toward pharmaceutical applications. J Med Chem 2020;63:11615–38.
  • Zoppi V, Hughes SJ, Maniaci C, et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J Med Chem 2019;62:699–726.
  • Mohamed AJ, Yu L, Bäckesjö CM, et al. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 2009;228:58–73.
  • Pan Z, Scheerens H, Li SJ, et al. Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem 2007;2:58–61.
  • Woyach JA, Furman RR, Liu TM, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med 2014;370:2286–94.
  • Reiff SD, Mantel R, Smith LL, et al. The BTK Inhibitor ARQ 531 targets ibrutinib-resistant CLL and Richter transformation. Cancer Discov 2018;8:1300–15.
  • Bond DA, Woyach JA. Targeting BTK in CLL: beyond ibrutinib. Curr Hematol Malig Rep 2019;14:197–205.
  • Sun Y, Ding N, Song Y, et al. Degradation of Bruton’s tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas. Leukemia 2019;33:2105–10.
  • Buhimschi AD, Armstrong HA, Toure M, et al. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry 2018;57:3564–75.
  • Huang HT, Dobrovolsky D, Paulk J, et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem Biol 2018;25:88–99.
  • Zorba A, Nguyen C, Xu Y, et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci USA 2018;115:E7285–92.
  • Tinworth CP, Lithgow H, Dittus L, et al. PROTAC-mediated degradation of Bruton’s tyrosine kinase is inhibited by covalent binding. ACS Chem Biol 2019;14:342–7.
  • Gabizon R, Shraga A, Gehrtz P, et al. Correction to efficient targeted degradation via reversible and irreversible covalent PROTACs. J Am Chem Soc 2020;142:11316.
  • Guo WH, Qi X, Yu X, et al. Enhancing intracellular accumulation and target engagement of PROTACs with reversible covalent chemistry. Nat Commun 2020;11:4268.
  • Zhao Y, Shu Y, Lin J, et al. Discovery of novel BTK PROTACs for B-cell lymphomas. Eur J Med Chem 2021;225:113820.
  • Schiemer J, Horst R, Meng Y, et al. Snapshots and ensembles of BTK and cIAP1 protein degrader ternary complexes. Nat Chem Biol 2021;17:152–60.
  • Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007;7:169–81.
  • Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005;5:341–54.
  • Takeuchi K, Ito F. Receptor tyrosine kinases and targeted cancer therapeutics. Biol Pharm Bull 2011;34:1774–80.
  • Sabbah DA, Hajjo R, Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR Inhibitors. Curr Top Med Chem 2020;20:815–34.
  • Singh D, Attri BK, Gill RK, et al. Review on EGFR inhibitors: critical updates. Mini Rev Med Chem 2016;16:1134–66.
  • Floc'h N, Lim S, Bickerton S, et al. Osimertinib, an irreversible next-generation EGFR tyrosine kinase inhibitor, exerts antitumor activity in various preclinical NSCLC models harboring the uncommon EGFR mutations G719X or L861Q or S768I. Mol Cancer Ther 2020;19:2298–307.
  • Kashima K, Kawauchi H, Tanimura H, et al. CH7233163 overcomes osimertinib-resistant EGFR-Del19/T790M/C797S mutation. Mol Cancer Ther 2020;19:2288–97.
  • Zhang H, Zhao HY, Xi XX, et al. Discovery of potent epidermal growth factor receptor (EGFR) degraders by proteolysis targeting chimera (PROTAC). Eur J Med Chem 2020;189:112061.
  • Cheng M, Yu X, Lu K, et al. Discovery of potent and selective epidermal growth factor receptor (EGFR) bifunctional Small-Molecule degraders. J Med Chem 2020;63:1216–32.
  • He K, Zhang Z, Wang W, et al. Discovery and biological evaluation of proteolysis targeting chimeras (PROTACs) as an EGFR degraders based on osimertinib and lenalidomide. Bioorg Med Chem Lett 2020;30:127167.
  • Zhao HY, Yang XY, Lei H, et al. Discovery of potent small molecule PROTACs targeting mutant EGFR. Eur J Med Chem 2020;208:112781.
  • Qu X, Liu H, Song X, et al. Effective degradation of EGFRL858R+T790M mutant proteins by CRBN-based PROTACs through both proteosome and autophagy/lysosome degradation systems. Eur J Med Chem 2021;218:113328.
  • Ren C, Sun N, Liu H, et al. Discovery of a brigatinib degrader SIAIS164018 with destroying Metastasis-Related oncoproteins and a reshuffling kinome profile. J Med Chem 2021;64:9152–65.
  • Cheng W, Li S, Wen X, et al. Development of hypoxia-activated PROTAC exerting a more potent effect in tumor hypoxia than in normoxia. Chem Commun 2021;57:12852–5.
  • Zhang X, Xu F, Tong L, et al. Design and synthesis of selective degraders of EGFRL858R/T790M mutant. Eur J Med Chem 2020;192:112199.
  • Wang K, Zhou H. Proteolysis targeting chimera (PROTAC) for epidermal growth factor receptor enhances anti-tumor immunity in non-small cell lung cancer. Drug Dev Res 2021;82:422–9.
  • Shi S, Du Y, Huang L, et al. Discovery of novel potent covalent inhibitor-based EGFR degrader with excellent in vivo efficacy. Bioorg Chem 2022;120:105605.
  • Dong Q, Du Y, Li H, et al. EGFR and c-MET cooperate to enhance resistance to PARP inhibitors in hepatocellular carcinoma. Cancer Res 2019;79:819–29.
  • Zheng M, Huo J, Gu X, et al. Rational design and synthesis of novel dual PROTACs for simultaneous degradation of EGFR and PARP. J Med Chem 2021;64:7839–52.
  • Georgiadis D, Mpakali A, Koumantou D, et al. Inhibitors of ER aminopeptidase 1 and 2: from design to clinical application. Curr Med Chem 2019;26:2715–29.
  • Demizu Y, Misawa T, Nagakubo T, et al. Structural development of stabilized helical peptides as inhibitors of estrogen receptor (ER)-mediated transcription. Bioorg Med Chem 2015;23:4132–8.
  • Nilsson S, Koehler KF, Gustafsson JÅ. Development of subtype-selective oestrogen receptor-based therapeutics. Nat Rev Drug Discov 2011;10:778–92.
  • Hu J, Hu B, Wang M, et al. Discovery of ERD-308 as a highly potent proteolysis targeting chimera (PROTAC) degrader of estrogen receptor (ER). J Med Chem 2019;62:1420–42.
  • Gonzalez TL, Hancock M, Sun S, et al. Targeted degradation of activating estrogen receptor α ligand-binding domain mutations in human breast cancer. Breast Cancer Res Treat 2020;180:611–22.
  • Roberts BL, Ma ZX, Gao A, et al. Two-Stage strategy for development of proteolysis targeting chimeras and its application for estrogen receptor degraders. ACS Chem Biol 2020;15:1487–96.
  • Disch JS, Duffy JM, Lee ECY, et al. Bispecific estrogen receptor α degraders incorporating novel binders identified using DNA-encoded chemical library screening. J Med Chem 2021;64:5049–66.
  • Itoh Y, Kitaguchi R, Ishikawa M, et al. Design, synthesis and biological evaluation of nuclear receptor-degradation inducers. Bioorg Med Chem 2011;19:6768–78.
  • Demizu Y, Okuhira K, Motoi H, et al. Design and synthesis of estrogen receptor degradation inducer based on a protein knockdown strategy. Bioorg Med Chem Lett 2012;22:1793–6.
  • Demizu Y, Ohoka N, Nagakubo T, et al. Development of a peptide-based inducer of nuclear receptors degradation. Bioorg Med Chem Lett 2016;26:2655–8.
  • Ohoka N, Okuhira K, Ito M, et al. In vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs). J Biol Chem 2017;292:4556–70.
  • Ohoka N, Morita Y, Nagai K, et al. Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor α degradation. J Biol Chem 2018;293:6776–90.
  • Yokoo H, Ohoka N, Takyo M, et al. Peptide stapling improves the sustainability of a Peptide-Based chimeric molecule that induces targeted protein degradation. Int J Mol Sci 2021;22:8772.
  • Aiello F, Carullo G, Giordano F, et al. Identification of breast cancer inhibitors specific for G protein-coupled estrogen receptor (GPER)-expressing cells . ChemMedChem 2017;12:1279–85.
  • Imesch P, Samartzis EP, Dedes KJ, et al. Histone deacetylase inhibitors down-regulate G-protein-coupled estrogen receptor and the GPER-antagonist G-15 inhibits proliferation in endometriotic cells. Fertil Steril 2013;100:770–6.
  • Lu AS, Rouhimoghadam M, Arnatt CK, et al. Proteolytic targeting chimeras with specificity for plasma membrane and intracellular estrogen receptors. Mol Pharm 2021;18:1455–69.
  • Heppler LN, Frank DA. Inhibit versus destroy: are PROTAC degraders the solution to targeting STAT3? Cancer Cell 2019;36:459–61.
  • Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov 2015;5:25–34.
  • Hung YP, Fletcher CDM, Hornick JL. Evaluation of pan-TRK immunohistochemistry in infantile fibrosarcoma, lipofibromatosis-like neural tumour and histological mimics. Histopathology 2018;73:634–44.
  • Chen L, Chen Y, Zhang C, et al. Discovery of first-in-class potent and selective tropomyosin receptor kinase degraders. J Med Chem 2020;63:14562–75.
  • Chaudhary D, Robinson S, Romero DL. Recent advances in the discovery of small molecule inhibitors of interleukin-1 receptor-associated kinase 4 (IRAK4) as a therapeutic target for inflammation and oncology disorders. J Med Chem 2015;58:96–110.
  • McElroy WT. Interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitors: an updated patent review (2016-2018). Expert Opin Ther Pat 2019;29:243–59.
  • Zhang J, Fu L, Shen B, et al. Assessing IRAK4 functions in ABC DLBCL by IRAK4 kinase Inhibition and protein degradation. Cell Chem Biol 2020;27:1500–9.
  • Chen Y, Ning Y, Bai G, et al. Design, synthesis, and biological evaluation of IRAK4-targeting PROTACs. ACS Med Chem Lett 2021;12:82–7.
  • Nunes J, McGonagle GA, Eden J, et al. Targeting IRAK4 for degradation with PROTACs. ACS Med Chem Lett 2019;10:1081–5.