1,873
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

Design, synthesis, and biological evaluation of triazole-pyrimidine-methylbenzonitrile derivatives as dual A2A/A2B adenosine receptor antagonists

, , , , , , , , & show all
Pages 1514-1526 | Received 17 Jan 2022, Accepted 10 May 2022, Published online: 26 May 2022

References

  • Yu F, Zhu C, Xie Q, et al. Adenosine A2A receptor antagonists for cancer immunotherapy. J Med Chem 2020;63:1514–12.
  • Saini A, Patel R, Gaba S, et al. Adenosine receptor antagonists: recent advances and therapeutic perspective. Eur J Med Chem 2022;227:113907.
  • Barresi E, Giacomelli C, Marchetti L, et al. Novel positive allosteric modulators of A2B adenosine receptor acting as bone mineralisation promoters. J Enzyme Inhib Med Chem 2021;36:287–95.
  • Reddy GL, Sarma R, Liu S, et al. Design, synthesis and biological evaluation of novel scaffold benzo[4,5]imidazo [1,2-a]pyrazin-1-amine: towards adenosine A2A receptor (A2A AR) antagonist. Eur J Med Chem 2021;210:113040.
  • Betti M, Catarzi D, Varano F, et al. The aminopyridine-3,5-dicarbonitrile core for the design of new non-nucleoside-like agonists of the human adenosine A2B receptor. Eur J Med Chem 2018;150:127–39.
  • Beavis PA, Milenkovski N, Henderson MA, et al. Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res 2015;3:506–17.
  • Nascimento DC, Viacava PR, Ferreira RG, et al. Sepsis expands a CD39+ plasmablast population that promotes immunosuppression via adenosine-mediated inhibition of macrophage antimicrobial activity. Immunity 2021;54:2024–41.e8.
  • Haskó G, Linden J, Cronstein B, et al. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 2008;7:759–70.
  • Dziedzic K, Węgrzyn P, Gałęzowski M, et al. Release of adenosine-induced immunosuppression: comprehensive characterization of dual A2A/A2B receptor antagonist. Int Immunopharmacol 2021;96:107645.
  • Sorrentino C, Miele L, Porta A, et al. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget 2015;6:27478–89.
  • Hofer F, Di Sario G, Musiu C, et al. A complex metabolic network confers immunosuppressive functions to myeloid-derived suppressor cells (MDSCs) within the tumour microenvironment. Cells 2021;10:2700.
  • Varano F, Catarzi D, Vincenzi F, et al. Structural investigation on thiazolo[5,4-d]pyrimidines to obtain dual-acting blockers of CD73 and adenosine A2A receptor as potential antitumor agents. Bioorg Med Chem Lett 2020;30:127067.
  • Antonioli L, Blandizzi C, Pacher P, et al. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 2013;13:842–57.
  • van Rensburg HDJ, Legoabe LJ, Terre'Blanche G, et al. Synthesis and evaluation of methoxy substituted 2-benzoyl-1-benzofuran derivatives as lead compounds for the development adenosine A1 and/or A2A receptor antagonists. Bioorg Chem 2020;94:103459.
  • Zhang M, Fan S, Zhou X, et al. Design, synthesis and biological evaluation of 2-hydrazinyladenosine derivatives as A2A adenosine receptor ligands. Eur J Med Chem 2019;179:310–24.
  • Renk DR, Skraban M, Bier D, et al. Design, synthesis and biological evaluation of Tozadenant analogues as adenosine A2A receptor ligands. Eur J Med Chem 2021;214:113214.
  • Majellaro M, Jespers W, Crespo A, et al. 3,4-Dihydropyrimidin-2(1H)-ones as Antagonists of the human A2B adenosine receptor: optimization, structure-activity relationship studies, and enantiospecific recognition. J Med Chem 2021;64:458–80.
  • Gao Z-G, Jacobson KA. A2B adenosine receptor and cancer. Int J Mol Sci 2019;20:5139.
  • Härter M, Kalthof B, Delbeck M, et al. Novel non-xanthine antagonist of the A2B adenosine receptor: from HTS hit to lead structure. Eur J Med Chem 2019;163:763–78.
  • Lim EA, Bauer TM, Patel MR, et al. A phase I, open-label, multicenter study to assess the safety, pharmacokinetics, and preliminary antitumor activity of AZD4635 both as monotherapy and in combination in patients with advanced solid malignancies: results from prostate cancer patients (NCT02740985). J Clin Oncol 2020;38:5518.
  • Hesk D, Borges S, Dumpit R, et al. Synthesis of 3H, 2H4, and 14 C-MK 3814 (preladenant) ). J Labelled Comp Radiopharm 2017;60:194–99.
  • Seitz L, Jin L, Leleti M, et al. Safety, tolerability, and pharmacology of AB928, a novel dual adenosine receptor antagonist, in a randomized, phase 1 study in healthy volunteers. Invest New Drugs 2019;37:711–21.
  • Nunez F, Taura J, Camacho J, et al. PBF509, an adenosine A2A receptor antagonist with efficacy in rodent models of movement disorders. Front Pharmacol 2018;9:120.
  • Caulkett PWR, Jones G, McPartlin M, et al. Adenine isosteres with bridgehead nitrogen. Part 1. Two independent syntheses of the [1,2,4]triazolo[1,5-a][1,3,5]triazine ring system leading to a range of substituents in the 2, 5 and 7 positions. J Chem Soc Perk Trans 1995;1:801–08.
  • Iannone R, Miele L, Maiolino P, et al. Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am J Cancer Res 2014;4:172–81.
  • Jaakola V-P, Griffith MT, Hanson MA, et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 2008;322:1211–17.
  • Weinert T, Olieric N, Cheng R, et al. Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nat Commun 2017;8:542.
  • Duroux R, Renault N, Cuelho JE, et al. Design, synthesis and evaluation of 2-aryl benzoxazoles as promising hit for the A2A receptor. J Enzyme Inhib Med Chem 2017;32:850–64.
  • Załuski M, Schabikowski J, Jaśko P, et al. 8-Benzylaminoxanthine scaffold variations for selective ligands acting on adenosine A2A receptors. Design, synthesis and biological evaluation. Bioorg Chem 2020;101:104033.
  • Bamford SJ, Gillespie RJ, Todd RS. Triazolo [4, 5-d] pyramidine derivatives, their preparation, and use as purine receptor antagonists for treating movement disorders and other diseases, Patent WO2009156737; 2009.
  • Sabnis RW. Combination therapy comprising A2A/A2B and PD-1/PD-L1 inhibitors for treating cancer. ACS Med Chem Lett 2021;12:1216–17.
  • Chandrasekaran B, Samarneh S, Jaber AM, et al. Therapeutic potentials of A2B adenosine receptor ligands: current status and perspectives. Curr Pharm Design 2019;25:2741–71.
  • Beatty J, Debien L, Jeffrey J, et al. Azolopyrimidine for the treatment of cancer-related disorders. 2019; US10399962.
  • Bobowska A, Galezowski M, Nowak M, et al. Preparation of imidazo[1,2-a]pyrazines as adenosine A2A receptor modulators for the treatment of various diseases. 2019; WO2019002606.
  • Hoang G, Wang X, Carlsen PN, et al. Preparation of pyrazolo- and triazolo-pyrazine derivatives as adenosine receptors A2A/A2B inhibitors. 2020; US20200031835.
  • Wang X, Carlsen PN, He C, et al. Pyrrole tricyclic compounds as A2A and A2B inhibitors and their preparation. 2019; US20190337957.
  • Wang Y, Xu H, Wang H, et al. Design, synthesis, and biological activity studies of istradefylline derivatives based on adenine as A2A receptor antagonists. ACS Omega 2021;6:4386–94.
  • Ondrackova P, Kovaru H, Kovaru F, et al. The effect of adenosine on pro-inflammatory cytokine production by porcine T cells. Vet Immunol Immunopathol 2012;145:332–39.
  • Cong W, Sun Y, Sun Y-F, et al. Trifluoromethyl-substituted 3,5-bis(arylidene)-4-piperidones as potential anti-hepatoma and anti-inflammation agents by inhibiting NF-кB activation. J Enzyme Inhib Med Chem 2021;36:1621–30.
  • Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018;46:W296–303.
  • da Silva ACR, Araujo JSC, Pita SSdR, et al. In silico development of adenosine A2B receptor antagonists for sickle cell disease. J Biomol Struct Dyn 2021; DOI: 10.1080/07391102.2021.1934121.