2,834
Views
4
CrossRef citations to date
0
Altmetric
Research Papers

From the Wuhan-Hu-1 strain to the XD and XE variants: is targeting the SARS-CoV-2 spike protein still a pharmaceutically relevant option against COVID-19?

, , ORCID Icon & ORCID Icon
Pages 1704-1714 | Received 17 Apr 2022, Accepted 20 May 2022, Published online: 13 Jun 2022

References

  • Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J Med Virol 2020;92:1704–2.
  • Heymann DL, Shindo N. COVID-19: what is next for public health? Lancet 2020;395:542–5.
  • COVID Live. Coronavirus Statistics - Worldometer. https://www.worldometers.info/coronavirus/
  • Guarner J. Three emerging coronaviruses in two decades: the story of SARS, MERS, and now COVID-19. Am J Clin Pathol 2020;153:420–1.
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–62.
  • Bolcato G, Bissaro M, Pavan M, et al. Targeting the coronavirus SARS-CoV-2: computational insights into the mechanism of action of the protease inhibitors lopinavir, ritonavir and nelfinavir. Sci Rep 2020;10:20927.
  • Gorbalenya AE, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol 2020;545:536–44.
  • Ksiazek TG, Erdman D, Goldsmith CS, et al.; SARS Working Group. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003;348:1953–66.
  • Peiris JSM, Chu CM, Cheng VCC, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 2003;361:1767–72.
  • Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 2005;310:676–9.
  • Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat Med 2020;26:450–2. 2020
  • Temmam S, Vongphayloth K, Baquero E, et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature 2022;604:330–6.
  • Pavan M, Bassani D, Sturlese M, Moro S. Bat coronaviruses related to SARS-CoV-2: what about their 3CL proteases (MPro)? J Enzyme Inhib Med Chem 2022;37:1077–82.
  • Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci U S A 2020;117:9241–3.
  • Harvey WT, Carabelli AM, Jackson B, COVID-19 Genomics UK (COG-UK) Consortium, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 2021;19:409–24.
  • Chu DK, Akl EA, Duda S, COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020;395:1973–2020.
  • Hellewell J, Abbott S, Gimma A, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Heal 2020;8:e488–e496.
  • Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection. Ann Inter Med 2020;173:362–8.
  • Garcia-Beltran WF, Lam EC, St Denis K, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021;184:2372–83.e9.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271–80.e8.
  • Li Q, Wu J, Nie J, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 2020;182:1284–94.e9.
  • Frampton D, Rampling T, Cross A, et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study. Lancet Infect Dis 2021;21:1246–56.
  • Campbell F, Archer B, Laurenson-Schafer H, et al. Increased transmissibility and global spread of SARSCoV- 2 variants of concern as at June 2021. Eurosurveillance 2021;26:1–6.
  • Davies NG, Abbott S, Barnard RC, CMMID COVID-19 Working Group, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021;372:eabg3055.
  • Volz E, Mishra S, Chand M, COVID-19 Genomics UK (COG-UK) consortium, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 2021;593:266–9.
  • Collier DA, De Marco A, Ferreira IATM, COVID-19 Genomics UK (COG-UK) Consortium, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 2021;593:136–41.
  • Chen RE, Zhang X, Case JB, et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med 2021;27:717–26.
  • Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021;593:130–5.
  • Haas EJ, Angulo FJ, McLaughlin JM, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet 2021;397:1819–29.
  • Twohig KA, Nyberg T, Zaidi A, COVID-19 Genomics UK (COG-UK) consortium, et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis 2022;22:35–42.
  • Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N Engl J Med 2021;385:585–94.
  • Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 2021;596:276–80.
  • Liu C, Ginn HM, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 2021;184:4220–36.e13.
  • Mlcochova P, Kemp SA, Dhar MS, The Indian SARS-CoV-2 Genomics Consortium (INSACOG), et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021;599:114–9.
  • Gao SJ, Guo H, Luo G. Omicron variant (B.1.1.529) of SARS-CoV-2, a global urgent public health alert! J Med Virol 2022;94:1255–6.
  • Araf Y, Akter F, Tang Y-D, et al. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J Med Virol 2022;94:1825–32.
  • Liu L, Iketani S, Guo Y, et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 2022;602:676–81.
  • Dejnirattisai W, Shaw RH, Supasa P, Com-COV2 study group, et al. Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum. Lancet 2022;399:234–6.
  • Cao Y, Wang J, Jian F, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022;602:657–63.
  • Hoffmann M, Krüger N, Schulz S, et al. The Omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemic. Cell 2022;185:447–56.e11.
  • Nemet I, Kliker L, Lustig Y, et al. Third BNT162b2 vaccination neutralization of SARS-CoV-2 omicron infection. N Engl J Med 2022;386:492–4.
  • Garcia-Beltran WF, St. Denis KJ, Hoelzemer A, et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022;185:457–66.e4.
  • Owen DR, Allerton CMN, Anderson AS, et al. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science 2021;374:1586–93.
  • Pavan M, Bolcato G, Bassani D, et al. Supervised Molecular Dynamics (SuMD) Insights into the mechanism of action of SARS-CoV-2 main protease inhibitor PF-07321332. J Enzyme Inhib Med Chem 2021;36:1646–50.
  • Hammond J, Leister-Tebbe H, Gardner A, et al. Oral nirmatrelvir for  high-risk, nonhospitalized adults with covid-19. N Engl J Med 2022;386:1397–408
  • Investigation of SARS-CoV-2 variants: technical briefings - GOV.UK. https://www.gov.uk/government/publications/investigation-of-sars-cov-2-variants-technical-briefings
  • Lacek KA, et al. Identification of a novel SARS-CoV-2 delta-omicron recombinant virus in the United States. bioRxiv 2022.
  • Aksamentov I, Roemer C, Hodcroft E, Neher R. Nextclade: clade assignment, mutation calling and quality control for viral genomes. J Open Source Softw 2021;6:3773.
  • Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7. 2021. https://www.chemcomp.com/Research-Citing_MOE.htm
  • Zhou D, Duyvesteyn HME, Chen C-P, et al. Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nat Struct Mol Biol 2020;27:950–8.
  • Wang Y, Liu C, Zhang C, et al. Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies. Nat Commun 2022;13:871.
  • Yin W, Xu Y, Xu P, et al. Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody. Science 2022;375:1048–53.
  • Case DA, Darden TA, Cheatham TE, et al. Amber 10. San Francisco: University of California; 2008.
  • Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph 1996;14:33–8.
  • Huang Y, Yang C, Xu X, et al. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020;41:1141–9.
  • Li M-Y, Li L, Zhang Y, Wang X-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty 2020;9:45.
  • Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 2022;23:3–20.
  • Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581:215–20.
  • Zhu C, He G, Yin Q, et al. Molecular biology of the SARs-CoV-2 spike protein: A review of current knowledge. J Med Virol 2021;93:5729–41.
  • Turkahia Y, et al. Pandemic-scale phylogenomics reveals elevated recombination rates in the SARS-CoV-2 Spike Region. bioRxiv 2021.
  • Zhang B-Z, Hu Y-F, Chen L-L, et al. Mining of epitopes on spike protein of SARS-CoV-2 from COVID-19 patients. Cell Res 2020;30:702–4.
  • Hadj Hassine I. Covid‐19 vaccines and variants of concern: a review. Rev Med Virol 2021;e2313.
  • https://covdb.stanford.edu/sierra/sars2/by-patterns/
  • VanBlargan LA, Errico JM, Halfmann PJ, et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat Med 2022;28:490–5.
  • Meng B, Kemp SA, Papa G, COVID-19 Genomics UK (COG-UK) Consortium, et al. Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep 2021;35:109292.
  • Hou YJ, Chiba S, Halfmann P, et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 2020;370:1464–8.
  • Weisblum Y, Schmidt F, Zhang F, et al. Escape from neutralizing antibodies 1 by SARS-CoV-2 spike protein variants. Elife 2020;9:1.
  • Lubinski B, Fernandes MHV, Frazier L, et al. Functional evaluation of the P681H mutation on the proteolytic activation of the SARS-CoV-2 variant B.1.1.7 (Alpha) spike. iScience 2022;25:103589.
  • Zahradník J, Marciano S, Shemesh M, et al. SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nat Microbiol 2021;6:1188–98.
  • Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res 2000;28:235–42.
  • Masre SF, Jufri NF, Ibrahim FW, Abdul Raub SH. Classical and alternative receptors for SARS-CoV-2 therapeutic strategy. Rev Med Virol 2021;31:1–9.
  • Sartore G, et al. In silico evaluation of the interaction between ACE2 and SARS-CoV-2 Spike protein in a hyperglycemic environment. Sci. Rep 2021;11:22860.
  • Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nat 2020;582:289–93.
  • Xia B, Kang X. Activation and maturation of SARS-CoV main protease. Protein Cell 2011;2:282–90.
  • Snijder EJ, Decroly E, Ziebuhr J. The Nonstructural Proteins Directing coronavirus RNA synthesis and processing. Adv Virus Res 2016;96:59–126.
  • Fornasier E, Macchia ML, Giachin G, et al. A new inactive conformation of SARS-CoV-2 main protease. Acta Crystallogr D Struct Biol 2022;78:363–78.
  • Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nat 2020;579:265–9.
  • Anand K, Palm GJ, Mesters JR, et al. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. Embo J 2002;21:3213–24.
  • Chen H, Wei P, Huang C, et al. Only one protomer is active in the dimer of SARS 3C-like proteinase. J Biol Chem 2006;281:13894–8.
  • Anand K, Ziebuhr J, Wadhwani P, et al. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 2003;300:1763–7.
  • Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 2020;30:127377.
  • Bassani D, Pavan M, Bolcato G, et al. Re-exploring the ability of common docking programs to correctly reproduce the binding modes of non-covalent inhibitors of SARS-CoV-2 protease MPRO. Pharmaceuticals 2022;15:180.
  • Bissaro M, Bolcato G, Pavan M, et al. Inspecting the mechanism of fragment hits binding on SARS-CoV-2 Mpro by using Supervised Molecular Dynamics (SuMD) simulations. Chem Med Chem 2021;16:2075–81.
  • Luttens A, Gullberg H, Abdurakhmanov E, et al. Ultralarge virtual screening identifies SARS-CoV-2 main protease inhibitors with broad-spectrum activity against coronaviruses. J Am Chem Soc 2022;144:2905–20.
  • Zhang C-H, Stone EA, Deshmukh M, et al. Potent noncovalent inhibitors of the main protease of SARS-CoV-2 from molecular sculpting of the drug perampanel guided by free energy perturbation calculations. ACS Cent Sci 2021;7:467–75.
  • Flynn JM, et al. Comprehensive fitness landscape of SARS-CoV-2 Mpro reveals insights into viral resistance mechanisms. bioRxiv 2022.
  • Greasley SE, et al. Structural basis for Nirmatrelvir in vitro efficacy against SARS-CoV-2 variants. bioRxiv 2022.
  • Xue X, Yang H, Shen W, et al. Production of authentic SARS-CoV M(pro) with enhanced activity: application as a novel tag-cleavage endopeptidase for protein overproduction. J Mol Biol 2007;366:965–75.
  • Ho B-L, Cheng S-C, Shi L, et al. Critical assessment of the important residues involved in the dimerization and catalysis of MERS coronavirus main protease. PLoS One 2015;10:e0144865.