2,365
Views
5
CrossRef citations to date
0
Altmetric
Research Papers

Synthesis, biological evaluation, and in silico studies of new CDK2 inhibitors based on pyrazolo[3,4-d]pyrimidine and pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine scaffold with apoptotic activity

, ORCID Icon, , , ORCID Icon, , , , , , & ORCID Icon show all
Pages 1957-1973 | Received 05 Apr 2022, Accepted 01 Jun 2022, Published online: 10 Jul 2022

References

  • Baillache DJ, Unciti-Broceta A. Recent developments in anticancer kinase inhibitors based on the pyrazolo [3,4-d] pyrimidine scaffold. RSC Med Chem 2020;11:1112–35. https://pubs.rsc.org/en/content/articlelanding/2020/md/d0md00227e
  • Abdelgawad MA, Elkanzi NA, Nayl AA, et al. Targeting tumor cells with pyrazolo [3,4-d] pyrimidine scaffold: a literature review on synthetic approaches, structure activity relationship, structural and target-based mechanisms. Arab J Chem 2022;15:103781.
  • Cohen P. Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 2002;1:309–15.
  • Abd El-Sattar NE, Badawy EH, AbdEl-Hady WH, et al. Design and synthesis of new CDK2 inhibitors containing thiazolone and thiazolthione scafold with apoptotic activity. Chem Pharm Bull 2021;69:106–17.
  • Chen J, Pang L, Wang W, et al. Decoding molecular mechanism of inhibitor bindings to CDK2 using molecular dynamics simulations and binding free energy calculations. J Biomol Struct Dyn 2020;38:985–96.
  • Liang SS, Liu XG, Cui YX, et al. Molecular mechanism concerning conformational changes of CDK2 mediated by binding of inhibitors using molecular dynamics simulations and principal component analysis. SAR QSAR Environ Res 2021;32:573–94.
  • Kontopidis G, McInnes C, Pandalaneni SR, et al. Differential binding of inhibitors to active and inactive CDK2 provides insights for drug design. Chem Biol 2006;13:201–11.
  • Li Y, Zhang J, Gao W, et al. Insights on structural characteristics and ligand binding mechanisms of CDK2. Int J Mol Sci 2015;16:9314–40.
  • Husseiny EM. Synthesis, cytotoxicity of some pyrazoles and pyrazolo[1,5-a]pyrimidines bearing benzothiazole moiety and investigation of their mechanism of action. Bioorg Chem 2020;102:104053.
  • Wee S, Dhanak D, Li H, Armstrong,  et al. Targeting epigenetic regulators for cancer therapy. Ann N Y Acad Sci 2014;1309:30–6.
  • Cherukupalli S, Karpoormath R, Chandrasekaran B, et al. An insight on synthetic and medicinal aspects of pyrazolo [1,5-a] pyrimidine scaffold. Eur J Med Chem 2017;126:298–352.
  • Ali GM, Ibrahim DA, Elmetwali AM, et al. Design, synthesis and biological evaluation of certain CDK2 inhibitors based on pyrazole and pyrazolo [1,5-a] pyrimidine scaffold with apoptotic activity. Bioorg Chem 2019;86:1–4.
  • Farag AM, Fahim AM. Synthesis, biological evaluation and DFT calculation of novel pyrazole and pyrimidine derivatives. J Mol Struct 2019;1179:304–14.
  • Gökhan-Kelekçi N, Yabanoğlu S, Küpeli E, et al. A new therapeutic approach in Alzheimer disease: some novel pyrazole derivatives as dual MAO-B inhibitors and antiinflammatory analgesics. Bioorg Med Chem 2007;15:5775–86.
  • Nithyabalaji R, Krishnan H, Sribalan R. Synthesis, molecular structure and multiple biological activities of N-(3-methoxyphenyl)-3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide. J Mol Struct 2019;1186:1–10.
  • Hernández-Vázquez E, Salgado-Barrera S, Ramírez-Espinosa JJ, et al. Synthesis and molecular docking of N′-arylidene-5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carbohydrazides as novel hypoglycemic and antioxidant dual agents. Bioorg Med Chem 2016;24:2298–306.
  • Nassar IF, El Farargy AF, Abdelrazek FM, et al. Design, synthesis and anticancer evaluation of novel pyrazole, pyrazolo [3,4-d] pyrimidine and their glycoside derivatives. Nucleosides Nucleotides Nucleic Acids 2017;36:275–91.
  • Nassar IF, Atta-Allah SR, Elgazwy AS. A convenient synthesis and molecular modeling study of novel pyrazolo[3,4-d]pyrimidine and pyrazole derivatives as anti-tumor agents. J Enzyme Inhib Med Chem 2015;30:396–405.
  • Rashad AE, Mahmoud AE, Ali MM. Synthesis and anticancer effects of some novel pyrazolo [3,4-d] pyrimidine derivatives by generating reactive oxygen species in human breast adenocarcinoma cells. Eur J Med Chem 2011;46:1019–26.
  • Hassan GS, Kadry HH, Abou-Seri SM, et al. Synthesis and in vitro cytotoxic activity of novel pyrazolo [3,4-d] pyrimidines and related pyrazole hydrazones toward breast adenocarcinoma MCF-7 cell line. Bioorg Med Chem 2011;19:6808–17.
  • El-Naggar M, Hassan AS, Awad HM, et al. Design, synthesis and antitumor evaluation of novel pyrazolopyrimidines and pyrazoloquinazolines. Molecules 2018;23:1249.
  • Radi M, Dreassi E, Brullo C, et al. Design, synthesis, biological activity, and ADME properties of pyrazolo [3,4-d] pyrimidines active in hypoxic human leukemia cells: a lead optimization study. J Med Chem 2011;54:2610–26.
  • Curran KJ, Verheijen JC, Kaplan J, et al. Pyrazolopyrimidines as highly potent and selective, ATP-competitive inhibitors of the mammalian target of rapamycin (mTOR): optimization of the 1-substituent. Bioorg Med Chem Lett 2010;20:1440–4.
  • Li Y, Gao W, Li F, et al. An in silico exploration of the interaction mechanism of pyrazolo [1,5-a] pyrimidine type CDK2 inhibitors. Mol Biosyst 2013;9:2266–81.
  • Almehmadi SJ, Alsaedi AM, Harras MF, et al. Synthesis of a new series of pyrazolo[1,5-a]pyrimidines as CDK2 inhibitors and anti-leukemia. Bioorg Chem 2021;117:105431.
  • Ismail NS, Ali EM, Ibrahim DA, et al. Pyrazolo [3,4-d] pyrimidine based scaffold derivatives targeting kinases as anticancer agents. Future J Pharm Sci 2016;2:20–30.
  • Chauhan M, Kumar R. Medicinal attributes of pyrazolo[3,4-d]pyrimidines: a review. Bioorg Med Chem 2013;21:5657–68.
  • Schenone S, Radi M, Musumeci F, et al. Biologically driven synthesis of pyrazolo[3,4-d]pyrimidines as protein kinase inhibitors: an old scaffold as a new tool for medicinal chemistry and chemical biology studies. Chem Rev 2014;114:7189–238.
  • Bocci G, Fioravanti A, La Motta C, et al. Antiproliferative and proapoptotic activity of CLM3, a novel multiple tyrosine kinase inhibitor, alone and in combination with SN-38 on endothelial and cancer cells. Biochem Pharmacol 2011;81:1309–16.
  • Abdelgawad MA, Bakr RB, Alkhoja OA, et al. Design, synthesis and antitumor activity of novel pyrazolo [3,4-d] pyrimidine derivatives as EGFR-TK inhibitors. Bioorg Chem 2016;66:88–96.
  • Le Brazidec JY, Pasis A, Tam B, et al. Synthesis, SAR and biological evaluation of 1,6-disubstituted-1H-pyrazolo[3,4-d]pyrimidines as dual inhibitors of Aurora kinases and CDK1. Bioorg Med Chem Lett 2012;22:2070–4.
  • Cherukupalli S, Chandrasekaran B, Aleti RR, et al. Synthesis of 4, 6-disubstituted pyrazolo [3,4-d] pyrimidine analogues: cyclin-dependent kinase 2 (CDK2) inhibition, molecular docking and anticancer evaluation. J Mol Struct 2019;1176:538–51.
  • Rahmouni A, Souiei S, Belkacem MA, et al. Synthesis and biological evaluation of novel pyrazolopyrimidines derivatives as anticancer and anti-5-lipoxygenase agents. Bioorg Chem 2016;66:160–8.
  • Cherukupalli S, Chandrasekaran B, Kryštof V, et al. Synthesis, anticancer evaluation, and molecular docking studies of some novel 4,6-disubstituted pyrazolo[3,4-d]pyrimidines as cyclin-dependent kinase 2 (CDK2) inhibitors. Bioorg Chem 2018;79:46–59.
  • Elgazwy AS, Ismail NS, Elzahabi HS. A convenient synthesis and molecular modeling study of novel purine and pyrimidine derivatives as CDK2/cyclin A3 inhibitors. Bioorg Med Chem 2010;18:7639–50.
  • Abdel‐Aal MT, El‐Sayed WA, El‐Kosy SM, et al. Synthesis and antiviral evaluation of novel 5‐(N‐aryl‐aminomethyl‐1,3,4‐oxadiazol‐2‐yl) hydrazines and their sugars, 1,2,4‐triazoles, tetrazoles and pyrazolyl derivatives. Arch Pharm Chem Life Sci 2008;341:307–13.
  • Girgis AS, Stawinski J, Ismail NS, et al. Synthesis and QSAR study of novel cytotoxic spiro[3H-indole-3,2′(1′H)-pyrrolo[3,4-c]pyrrole]-2,3′,5′ (1H,2′aH,4′H)-triones. Eur J Med Chem 2012;47:312–22.
  • Fawzy IM, Youssef KM, Lasheen DS, et al. Design, synthesis and 3D QSAR based pharmacophore study of novel imatinib analogs as antitumor-apoptotic agents. Future Med Chem 2018;10:1421–33.
  • Hennek J, Alves J, Yao E, et al. Bioluminescent kinase strips: a novel approach to targeted and flexible kinase inhibitor profiling. Anal Biochem 2016;495:9–20.
  • Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. In: Checkpoint controls and cancer. Humana Press; 2004. p. 301–11. doi:10.1385/1-59259-811-0:301.
  • Ismail A, Doghish AS, Elsadek BE, et al. Hydroxycitric acid potentiates the cytotoxic effect of tamoxifen in MCF-7 breast cancer cells through inhibition of ATP citrate lyase. Steroids 2020;160:108656.
  • Bitew M, Desalegn T, Demissie TB, et al. Pharmacokinetics and drug-likeness of antidiabetic flavonoids: molecular docking and DFT study. PLoS One 2021;16:e0260853.
  • Dong J, Wang NN, Yao ZJ, et al. ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminformatics 2018;10:1.
  • Zou W, Ma X, Hua W, et al. BRIP1 inhibits the tumorigenic properties of cervical cancer by regulating RhoA GTPase activity. Oncol Lett 2016;11:551–8.