1,746
Views
4
CrossRef citations to date
0
Altmetric
Research Papers

Rational design of biodegradable sulphonamide candidates treating septicaemia by synergistic dual inhibition of COX-2/PGE2 axis and DHPS enzyme

, , , , , , & show all
Pages 1737-1751 | Received 30 Apr 2022, Accepted 01 Jun 2022, Published online: 16 Jun 2022

References

  • Park JY, Pillinger MH, Abramson SB. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin Immunol 2006;119:1737–40.
  • Nakayama T, Mutsuga N, Yao L, Tosato G. Prostaglandin E2 promotes degranulation-independent release of MCP-1 from mast cells. J Leukoc Biol 2006;79:95–104.
  • Kalinski P. Regulation of Immune Responses by Prostaglandin E2. J Immunol 2012;188:21–8.
  • Serezani CH, Chung J, Ballinger MN, et al. Prostaglandin E 2 Suppresses Bacterial Killing in Alveolar Macrophages by Inhibiting NADPH Oxidase. Am J Respir Cell Mol Biol 2007;37:562–70.
  • Obermajer N, Wong JL, Edwards RP, et al. PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunol Invest 2012;41:635–57.
  • Blaschke U, Beineke A, Klemens J, et al. Induction of Cyclooxygenase 2 by Streptococcus pyogenes Is Mediated by Cytolysins. J Innate Immun 2017;9:587–97.
  • Wang Y, Ren B, Zhou X, et al. Growth and adherence of Staphylococcus aureus were enhanced through the PGE2 produced by the activated COX-2/PGE2 pathway of infected oral epithelial cells. PLoS One 2017;12:e0177166–21.
  • Annamanedi M, Kalle AM. Celecoxib sensitizes Staphylococcus aureus to antibiotics in macrophages by modulating SIRT1. PLoS One 2014;9:e99285–9.
  • Kalle AM, Rizvi A. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor. Antimicrob Agents Chemother 2011;55:439–42.
  • Varma GYN, Kummari G, Paik P, Kalle AM. Celecoxib potentiates antibiotic uptake by altering membrane potential and permeability in Staphylococcus aureus. J Antimicrob Chemother 2019;74:3462–72.
  • Ahmed EF, El-baky RMA, Ahmed ABF, et al. Antibacterial activity of some non-steroidal anti-inflammatory drugs against bacteria causing urinary tract infection. Am J Infect Dis Microbiol 2017;5:66–73.
  • Elaine WLC, Ling W, Yee ZY, et al. Synergistic effect of non - steroidal anti - inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin - resistant Staphylococcus aureus. Integr Med Res 2010;10: 70–4.
  • Altaf M, Ijaz M, Ghaffar A, et al. Antibiotic susceptibility profile and synergistic effect of non-steroidal anti-inflammatory drugs on antibacterial activity of resistant antibiotics (Oxytetracycline and Gentamicin) against methicillin resistant Staphylococcus aureus (MRSA). Microb Pathog 2019;137:103755.
  • Jeśman C, Młudzik A, Cybulska M. [History of antibiotics and sulphonamides discoveries]. Pol Merkur Lekarski 2011;30:320–2.
  • El-attar MAZ, Shaaban OG, Elbayaa RY, et al. Design, synthesis, antibacterial evaluation and molecular docking studies of some new quinoxaline derivatives targeting dihyropteroate synthase enzyme. Bioorg Chem 2018;76:437–48.
  • Bano S, Javed K, Ahmad S, et al. Synthesis and biological evaluation of some new 2-pyrazolines bearing benzene sulfonamide moiety as potential anti-inflammatory and anti-cancer agents. Eur J Med Chem 2011;46:5763–8.
  • Zhang H, He S, Peng Y, et al. European Journal of Medicinal Chemistry Design, synthesis and antimicrobial evaluation of novel benzimidazole-incorporated sulfonamide analogues. Eur J Med Chem 2017;136:165–83.
  • Davison EK, Mcgowan JE, Li FF, et al. Bioorganic & Medicinal Chemistry C-2 derivatized 8-sulfonamidoquinolines as antibacterial compounds. Bioorg Med Chem 2021;29:115837.
  • Taha M, Irshad M, Imran S, et al. Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study. Eur J Med Chem 2017;141:530–7.
  • Sethi KK, Verma SM, Tanç M, et al. Carbonic anhydrase inhibitors: synthesis and inhibition of the cytosolic mammalian carbonic anhydrase isoforms I, II and VII with benzene sulfonamides incorporating 4,5,6,7-tetrachlorophthalimide moiety. Bioorg Med Chem 2013;21:5168–74.
  • Küçükbay FZ, Küçükbay H, Tanc M, Supuran CT. Synthesis and carbonic anhydrase I, II, IV and XII inhibitory properties of N-protected amino acid - sulfonamide conjugates. J Enzyme Inhib Med Chem 2016;31:1476–83.
  • Eldehna WM, Al-Ansary GH, Bua S, et al. Novel indolin-2-one-based sulfonamides as carbonic anhydrase inhibitors: synthesis, in vitro biological evaluation against carbonic anhydrases isoforms I, II, IV and VII and molecular docking studies. Eur J Med Chem 2017;127:521–30.
  • Buğday N, Küçükbay FZ, Küçükbay H, et al. Synthesis of novel dipeptide sulfonamide conjugates with effective carbonic anhydrase I, II, IX, and XII inhibitory properties. Bioorg Chem 2018;81:311–8.
  • Küçükbay H, Buğday N, Küçükbay FZ, et al. Synthesis and carbonic anhydrase inhibitory properties of novel 4-(2-aminoethyl)benzenesulfonamide-dipeptide conjugates. Bioorg Chem 2019;83:414–23.
  • Ghorab MM, Ragab FA, Heiba HI, et al. In vitro anticancer screening and radiosensitizing evaluation of some new quinolines and pyrimido[4,5-b]quinolines bearing a sulfonamide moiety. Eur J Med Chem 2010;45:3677–84.
  • Al-said MS, Ghorab MM, Al-qasoumi SI, et al. European Journal of Medicinal Chemistry Synthesis and in vitro anticancer screening of some novel benzenesulfonamides. Eur J Med Chem 2010;45:3011–8.
  • Liu Y, Chen Y, Zhang HY. Handbook of macrocyclic supramolecular assembly. Singapore: Springer; 2020. doi:10.1007/978-981-13-1744-6
  • PEPPERCORN MA, Boston M. Sulfasalazine. Pharmacology, clinical use, toxicity, and related new drug development 1984;101:377–86.
  • Hoult RS. Section 1 mode of action pharmacological and biochemical actions of sulphasalazine. Drugs 1986;32:18–26.
  • Bach MK, Brashler JR, Johnson MA. Inhibition by sulfasalazine of ltc synthetase and of rat liver glutathione s-transferases. Biochem Pharmacol 1985;34:2695–704.
  • Stephenson K, Yamaguchi Y, Hoch JA. The mechanism of action of inhibitors of bacterial two-component signal transduction systems. J Biol Chem 2000;275:38900–4.
  • Hilliard JJ, Goldschmidt RM, Licata L, et al. Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrob Agents Chemother 1999;43:1693–9.
  • Dunn JA, Coburn RA, Evans RT, et al. Novel topically active antimicrobial and anti-inflammatory compounds for acne. Dermatologic, Cosmeceutic, Cosmet Dev Ther Nov Approaches 2007;243–9.
  • El-Nagar MKS, Abdu-Allah HHM, Salem OIA, et al. Novel N-substituted 5-aminosalicylamides as dual inhibitors of cyclooxygenase and 5-lipoxygenase enzymes: synthesis, biological evaluation and docking study. Bioorg Chem 2018;78:80–93.
  • Férriz JM, Vávrová K, Kunc F, et al. Salicylanilide carbamates: antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorg Med Chem 2010;18:1054–61.
  • Imramovsky A, Vinšová J, Férriz JM, et al. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorganic & Medicinal Chemistry 2009;17:3572–9.
  • Imramovsky A, Vinšová J, Férriz JM, et al. Salicylanilide esters of N-protected amino acids as novel antimicrobial agents. Bioorganic & Medicinal Chemistry Letters 2009;19:348–51.
  • Imramovsky A, Pesko M, Kralova K, et al. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-n-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules 2011;16:2414–30.
  • Deng W, Guo Z, Guo Y, et al. Acryloylamino-salicylanilides as EGFR PTK inhibitors. Bioorg Med Chem Lett 2006;16:469–72.
  • Benesova L, Minarik M, Jancarikova D, et al. Multiplicity of EGFR and KRAS mutations in non-small cell lung cancer (NSCLC) patients treated with tyrosine kinase inhibitors. Anticancer Res 2010;1672:1667–71.
  • Bartram DJ, Leathwick DM, Taylor MA, et al. Veterinary Parasitology The role of combination anthelmintic formulations in the sustainable control of sheep nematodes. Vet Parasitol 2012;186:151–8.
  • Bak A, Kos J, Michnova H, et al. Consensus-based pharmacophore mapping for new set of N - (disubstituted-phenyl)-3. Int J Mol Sci 2020;21:6583.
  • Brown ME, Fitzner JN, Stevens T, et al. Salicylanilides: selective inhibitors of interleukin-12p40 production. Bioorg Med Chem 2008;16:8760–4.
  • Angom RS, Zhu J, Wu AT, et al. LCC-09, a novel salicylanilide derivative, exerts anti-inflammatory effect in vascular endothelial cells. J Inflamm Res 2021;14:4551–65.
  • Lima RN, Silva VR, De Santos L, et al. Fast synthesis of amides from ethyl salicylate under microwave radiation in a solvent-free system. RSC Adv 2017;7:56566–74.
  • Fahmy HHI, Soliman GA. Synthesis of New Salicylamide Derivatives with Evaluation of Their Antiinflammatory. Analgesic and Antipyretic Activities 2001;24:180–9.
  • Gnanaprakasam B, Milstein D. Synthesis of amides from esters and amines with liberation of H 2 under neutral conditions. J Am Chem Soc 2011;133:1682–5.
  • Modak A, Dutta U, Kancherla R, Maity S, Bhadra M, Mobin SM, Maiti D. Predictably selective (sp3)C-O bond formation through copper catalyzed dehydrogenative coupling: Facile synthesis of dihydro-oxazinone derivatives. Org Lett 2014;16:2602–5.
  • AlFadly ED, Elzahhar PA, Tramarin A, et al. Tackling neuroinflammation and cholinergic deficit in Alzheimer's disease: multi-target inhibitors of cholinesterases, cyclooxygenase-2 and 15-lipoxygenase. Eur J Med Chem 2019;167:161–86.
  • Rashad AY, Kassab SE, Daabees HG, et al. Febuxostat-based amides and some derived heterocycles targeting xanthine oxidase and COX inhibition. Synthesis, in vitro and in vivo biological evaluation, molecular modeling and in silico ADMET studies. Bioorg Chem 2021;113:104948.
  • Alfayomy AM, Abdel-Aziz SA, Marzouk AA, Shaykoon MSA, et al. Design and synthesis of pyrimidine-5-carbonitrile hybrids as COX-2 inhibitors: anti-inflammatory activity, ulcerogenic liability, histopathological and docking studies. Bioorg Chem 2021;108:104555.
  • El-Dershaby NH, El-Hawash SA, Kassab SE, et al. 2021. Design, Synthesis and Biological Evaluation of Some Novel Sulfonamide Derivatives as Dual Antiinflammatory and Antibacterial Agents, Institutional Animal Care and Use Committee (HU-IACUC), Faculty of Science, Helwan University, Egypt.: Approval No. HU2021/Z/AE0721-01.
  • El-Hawash SAM, Badawey ESAM, El-Ashmawey IM. Nonsteroidal antiinflammatory agents-part 2 antiinflammatory, analgesic and antipyretic activity of some substituted 3-pyrazolin-5-ones and 1,2,4,5,6,7-3H-hexahydroindazol-3-ones. Eur J Med Chem 2006;41:155–65.
  • Shabaan MA, Kamal AM, Faggal SI, et al. Synthesis and biological evaluation of pyrazolone analogues as potential anti-inflammatory agents targeting cyclooxygenases and 5-lipoxygenase. Arch Pharm (Weinheim) 2020;353:1900308.
  • Srivastava SK, Nath C, Gupta MB, Vrat S, et al. Protection against gastric ulcer by verapamil. Pharmacol Res 1991;23:81–6.
  • Al-Omary FAM, Abou-Zeid LA, Nagi MN, et al. Non-classical antifolates. Part 2: synthesis, biological evaluation, and molecular modeling study of some new 2,6-substituted-quinazolin-4-ones. Bioorg Med Chem 2010;18:2849–63.
  • CLSI CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clin Lab Standars Inst 2018;32:18.
  • Weinstein MP, Patel JB, Burnhman C-A, ZImmer BL. MO7: methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically standard, approval CDM-A. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
  • Gout PW, Buckley AR, Simms CR, Bruchovsky N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia 2001;15:1633–40.
  • Yamaguchi K, Domon H, Miyazaki S, et al. In vitro and in vivo antibacterial activities of CS-834, a new oral carbapenem. Antimicrob Agents Chemother 1998;42:555–63.
  • Bussiere DE, Xie L, Srinivas H, et al. Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat Chem Biol 2020;16:15–23.
  • Abdellatif KRA, Abdelall EKA, Lamie PF, et al. New pyrazole derivatives possessing amino/methanesulphonyl pharmacophore with good gastric safety profile: design, synthesis, cyclooxygenase inhibition, anti-inflammatory activity and histopathological studies. Bioorg Chem 2020;95:103540.
  • Wang M, Lu J, Wang M, et al. Discovery of SHP2-D26 as a First, Potent, and Effective PROTAC Degrader of SHP2 Protein. J Med Chem 2020;63:7510–28.
  • Basha A, Lipton M, Weinreb SM. T&r&e&-on Letters No. $3, pp 4171 - 4174, 1977. Tetrahedron Lett 1977;18:4171–4.
  • Patrono C. Cardiovascular effects of nonsteroidal anti-inflammatory drugs. Curr Cardiol Rep 2016;18:25–8.
  • Wang JL, Limburg D, Graneto MJ, et al. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: the second clinical candidate having a shorter and favorable human half-life. Bioorg Med Chem Lett 2010;20:7159–63.
  • Yun M-K, Wu Y, Li Z, et al. Catalysis and sulfa drug resistance in dihydropteroate synthase. Science 2012;335:1110–4.
  • Misal SA, Gawai KR. Azoreductase: a key player of xenobiotic metabolism. Bioresour Bioprocess 2018;5:17.
  • Kassab SE, Khedr MA, Ali HI, Abdalla MM. Discovery of new indomethacin-based analogs with potentially selective cyclooxygenase-2 inhibition and observed diminishing to PGE2 activities. Eur J Med Chem 2017;141:306–21.
  • Can NÖ, Osmaniye D, Levent S, et al. Design, synthesis and biological assessment of new thiazolylhydrazine derivatives as selective and reversible hMAO-A inhibitors. Eur J Med Chem 2018;144:68–81.
  • Molinspiation. Available from: https://www.molinspiration.com/ [last accessed 4 Feb 2022].
  • Pre-ADMET. Available from: https://preadmet.bmdrc.kr/ [last accessed 14 Feb 2022].
  • Osiris Property Explorer. Available from: https://www.organic-chemistry.org/prog/peo/ [last accessed 16 Feb 2022].
  • Zhao YH, Abraham MH, Le J, et al. Rate-limited steps of human oral absorption and QSAR studies. Pharm Res 2002;19:1446–57.
  • Ahsan MJ, Govindasamy J, Khalilullah H, et al. POMA analyses as new efficient bioinformatics’ platform to predict and optimise bioactivity of synthesized 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide/carbothioamide analogues. Bioorg Med Chem Lett 2012;22:7029–35.
  • Hassan NW, Saudi MN, Abdel-Ghany YS, et al. Novel pyrazine based anti-tubercular agents: design, synthesis, biological evaluation and in silico studies. Bioorg Chem 2020;96:103610.
  • Elzahhar PA, Abd El Wahab SM, Elagawany M, et al. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. Eur J Med Chem 2020;200:112439.
  • Hopkins AL, Keserü GM, Leeson PD, et al. The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov 2014;13:105–21.