2,433
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Structure-based optimization of type III indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1773-1811 | Received 17 Mar 2022, Accepted 05 Jun 2022, Published online: 27 Jun 2022

References

  • Kraehenbuehl L, Weng C-H, Eghbali S, et al. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol 2022;19:37–50.
  • Uyttenhove C, Pilotte L, Théate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003;9:1269–74.
  • Platten M, Nollen EAA, Röhrig UF, et al. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov 2019;18:379–401.
  • Mondanelli G, Mandarano M, Belladonna ML, et al. Current challenges for IDO2 as target in cancer immunotherapy. Front Immunol 2021;12:679953.
  • Yuasa HJ, Stocker R. Methylene blue and ascorbate interfere with the accurate determination of the kinetic properties of IDO2. Febs J 2021;288:4892–904.
  • Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 2007;117:1147–54.
  • Spranger S, Spaapen RM, Zha Y, et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci Transl Med 2013;5:200–ra116.
  • Spranger S, Koblish HK, Horton B, et al. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer 2014;2:3.
  • Long GV, Dummer R, Hamid O, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol 2019;20:1083–97.
  • Muller AJ, Manfredi MG, Zakharia Y, Prendergast GC. Inhibiting IDO pathways to treat cancer: lessons from the ECHO-301 trial and beyond. Semin Immunopathol 2019;41:41–8.
  • Van den Eynde BJ, van Baren N, Baurain J-f. Is there a clinical future for IDO1 inhibitors after the failure of epacadostat in Melanoma? Annu Rev Cancer Biol 2020;4:241–256.
  • Pallotta MT, Orabona C, Volpi C, et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 2011;12:870–8.
  • Albini E, Rosini V, Gargaro M, et al. Distinct roles of immunoreceptor tyrosine-based motifs in immunosuppressive indoleamine 2,3-dioxygenase 1. J Cell Mol Med 2017;21:165–76.
  • Albini E, Coletti A, Greco F, et al. Identification of a 2-propanol analogue modulating the nonenzymatic function of indoleamine 2,3-dioxygenase 1. Biochem Pharmacol 2018;158:286–97.
  • Nelp MT, Kates PA, Hunt JT, et al. Immune-modulating enzyme indoleamine 2,3-dioxygenase is effectively inhibited by targeting its apo-form. Proc Natl Acad Sci USA 2018;115:3249–54.
  • Lim YJ, Foo TC, Yeung AWS, et al. Human indoleamine 2,3-dioxygenase 1 is an efficient Mammalian nitrite reductase. Biochemistry 2019;58:974–86.
  • Stanley CP, Maghzal GJ, Ayer A, et al. Singlet molecular oxygen regulates vascular tone and blood pressure in inflammation. Nature 2019;566:548–52.
  • Nelp MT, Zheng V, Davis KM, et al. Potent activation of indoleamine 2,3-dioxygenase by polysulfides. J Am Chem Soc 2019;141:15288–300.
  • Feng X, Liao D, Liu D, et al. Development of indoleamine 2,3-dioxygenase 1 inhibitors for cancer therapy and beyond: a recent perspective. J Med Chem 2020;63:15115–39.
  • Tang K, Wu Y-H, Song Y, Yu B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J Hematol Oncol 2021;14:68.
  • wwPDB c. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res 2019;47:D520–D528.
  • Röhrig UF, Reynaud A, Majjigapu SR, et al. Inhibition mechanisms of indoleamine 2,3-Dioxygenase 1 (IDO1). J Med Chem 2019;62:8784–95.
  • Yue EW, Sparks R, Polam P, et al. INCB24360 (Epacadostat), a highly potent and selective indoleamine-2,3dioxygenase 1 (IDO1) inhibitor for immuno-oncology. ACS Med Chem Lett 2017;8:486–91.
  • Kumar S, Waldo JP, Jaipuri FA, et al. Discovery of clinical candidate (1R,4r)-4-((R)-2-((S)-6-Fluoro-5H-imidazo[5,1-a]isoindol-5-yl)-1-hydroxyethyl)cyclohexan-1-ol (Navoximod), a potent and selective inhibitor of indoleamine 2,3-dioxygenase 1. J Med Chem 2019;62:6705–33.
  • Crosignani S, Bingham P, Bottemanne P, et al. Discovery of a Novel and selective indoleamine 2,3-dioxygenase (IDO-1) inhibitor 3-(5-Fluoro-1 H-indol-3-yl)pyrrolidine-2,5-dione (EOS200271/PF-06840003) and its characterization as a potential clinical candidate. J Med Chem 2017;60:9617–29.
  • Balog A, Lin T-a, Maley D, et al. Preclinical characterization of linrodostat mesylate, a Novel, potent, and selective oral indoleamine 2,3-dioxygenase 1 inhibitor. Mol Cancer Ther 2021;20:467–76.
  • Röhrig UF, Michielin O, Zoete V. Structure and plasticity of indoleamine 2,3-dioxygenase 1 (IDO1). J Med Chem 2021;64:17690–705.
  • Röhrig UF, Majjigapu SR, Reynaud A, et al. Azole-based indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. J Med Chem 2021;64:2205–27.
  • Röhrig UF, Awad L, Grosdidier A, et al. Rational design of indoleamine 2,3-dioxygenase inhibitors. J Med Chem 2010;53:1172–89.
  • Yue EW, Douty B, Wayland B, et al. Discovery of potent competitive inhibitors of indoleamine 2,3-dioxygenase with in vivo pharmacodynamic activity and efficacy in a mouse melanoma model. J Med Chem 2009;52:7364–7.
  • Paul S, Roy A, Deka SJ, et al. Nitrobenzofurazan derivatives of N′-hydroxyamidines as potent inhibitors of indoleamine-2,3dioxygenase 1. Eur J Med Chem 2016;121:364–75.
  • Zhang H, Liu K, Pu Q, et al. Discovery of amino-cyclobutarene-derived indoleamine2,3-dioxygenase 1 (IDO1) inhibitors for cancer immunotherapy. ACS Med Chem Lett 2019;10:1530–6.
  • Du Q, Feng X, Wang Y, et al. Discovery of phosphonamidate IDO1 inhibitors for the treatment of non-small cell lung cancer. Eur J Med Chem 2019;182:111629.
  • Chen S, Guo W, Liu X, et al. Design, synthesis and antitumor study of a series of N-Cyclic sulfamoylaminoethyl substituted 1,2,5-oxadiazol-3-amines as new indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors. Eur J Med Chem 2019;179:38–55.
  • Liu C, Nan Y, Xia Z, et al. Discovery of novel hydroxyamidine derivatives as indoleamine 2,3-dioxygenase 1 inhibitors with in vivo anti-tumor efficacy. Bioorg Med Chem Lett 2020;30:127038.
  • Steeneck C, Kinzel O, Anderhub S, et al. Discovery of hydroxyamidine based inhibitors of IDO1 for cancer immunotherapy with reduced potential for glucuronidation. ACS Med Chem Lett 2020;11:179–87.
  • Song X, Sun P, Wang J, et al. Design, synthesis, and biological evaluation of 1,2,5-oxadiazole-3-carboximidamide derivatives as Novel indoleamine-2,3-dioxygenase 1 inhibitors. Eur J Med Chem 2020;189:112059.
  • Jin F, Hu Q, Fei H, et al. Discovery of hydroxyamidine derivatives as highly potent, selective indoleamine-2,3-dioxygenase 1 Inhibitors. ACS Med Chem Lett 2021;12:195–201.
  • Sono M, Cady SG. Enzyme kinetic and spectroscopic studies of inhibitor and effector interactions with indoleamine 2,3-dioxygenase. 1. Norharman and 4-phenylimidazole binding to the enzyme as inhibitors and heme ligands. Biochemistry 1989;28:5392–9.
  • Sugimoto H, Oda S-i, Otsuki T, et al. Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc Natl Acad Sci USA 2006;103:2611–6.
  • Kumar S, Jaller D, Patel B, et al. Structure based development of phenylimidazole-derived inhibitors of indoleamine 2,3-dioxygenase. J Med Chem 2008;51:4968–77.
  • Fallarini S, Massarotti A, Gesù A, et al. In silico-driven multicomponent synthesis of 4,5- and 1,5-disubstituted imidazoles as indoleamine 2,3-dioxygenase inhibitors. MedChemComm 2016;7:409–19.
  • Brant MG, Goodwin-Tindall J, Stover KR, et al. Identification of potent indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors based on a phenylimidazole scaffold. ACS Med Chem Lett 2018;9:131–6.
  • Zheng Y, Stafford PM, Stover KR, et al. A series of 2-((1-Phenyl-1H-imidazol-5-yl)methyl)-1H-indoles as Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. ChemMedChem 2021;16:2195–205.
  • Peng Y-H, Ueng S-H, Tseng C-T, et al. Important hydrogen bond networks in indoleamine 2,3-Dioxygenase 1 (IDO1) inhibitor design revealed by crystal structures of imidazoleisoindole derivatives with IDO1. J Med Chem 2016;59:282–93.
  • Zou Y, Wang F, Wang Y, et al. Discovery of imidazoleisoindole derivatives as potent IDO1 inhibitors: design, synthesis, biological evaluation and computational studies. Eur J Med Chem 2017;140:293–304.
  • Tu W, Yang F, Xu G, et al. Discovery of imidazoisoindole derivatives as highly potent and orally active indoleamine-2,3-dioxygenase Inhibitors. ACS Med Chem Lett 2019;10:949–53.
  • Parr BT, Pastor R, Sellers BD, et al. Implementation of the CYP index for the design of selective tryptophan-2,3-dioxygenase inhibitors. ACS Med Chem Lett 2020;11:541–9.
  • Crescenzi C, Fuchss T, Ippoliti D, et al. Reiterative chiral resolution/racemization/recycle (RRR synthesis) for an effective and scalable process for the enantioselective synthesis of a dual IDO1/TDO2 inhibitor imidazoisoindole derivative. Org Process Res Dev 2020;24:1018–23.
  • Tojo S, Kohno T, Tanaka T, et al. Crystal structures and structure–activity relationships of imidazothiazole derivatives as IDO1 inhibitors. ACS Med Chem Lett 2014;5:1119–23.
  • Peng Y-h, Liao F-y, Tseng C-t, et al. Unique sulfur–aromatic interactions contribute to the binding of potent imidazothiazole indoleamine 2,3-dioxygenase inhibitors. J Med Chem 2020;63:1642–59.
  • Griglio A, Torre E, Serafini M, et al. A multicomponent approach in the discovery of indoleamine 2,3-dioxygenase 1 inhibitors: synthesis, biological investigation and docking studies. Bioorg Med Chem Lett 2018;28:651–7.
  • Serafini M, Torre E, Aprile S, et al. Synthesis, docking and biological evaluation of a novel class of imidazothiazoles as IDO1 inhibitors. Molecules 2019;24:1874.
  • Cowley P, Wise A, Pharmaceutical compound. 2016; Patent WO 2016/071293.
  • Qian S, He T, Wang W, et al. Discovery and preliminary structure–activity relationship of 1H-indazoles with promising indoleamine-2,3-dioxygenase 1 (IDO1) inhibition properties. Bioorg Med Chem 2016;24:6194–205.
  • Yang L, Chen Y, He J, et al. 4,6-Substituted-1H-indazoles as potent IDO1/TDO dual inhibitors. Bioorg Med Chem 2019;27:1087–98.
  • Ning X-L, Li Y-Z, Huo C, et al. X-ray structure-guided discovery of a potent, orally bioavailable, dual human indoleamine/tryptophan 2,3-dioxygenase (hIDO/hTDO) inhibitor that shows activity in a mouse model of Parkinson’s Disease. J Med Chem 2021;64:8303–32.
  • Röhrig UF, Majjigapu SR, Grosdidier A, et al. Rational design of 4-aryl-1,2,3-triazoles for indoleamine 2,3-dioxygenase 1 inhibition. J Med Chem 2012;55:5270–90.
  • Panda S, Pradhan N, Chatterjee S, et al. Manna, D. 4,5-disubstituted 1,2,3-triazoles: effective inhibition of indoleamine 2,3-dioxygenase 1 enzyme regulates t cell activity and mitigates tumor growth. Sci Rep 2019;9:18455.
  • Alexandre JAC, Swan MK, Latchem MJ, et al. New 4-Amino-1,2,3-triazole inhibitors of indoleamine 2,3-dioxygenase form a long-lived complex with the enzyme and display exquisite cellular potency. ChemBioChem 2018;19:552–61.
  • Röhrig UF, Majjigapu SR, Chambon M, et al. Detailed analysis and follow-up studies of a high-throughput screening for indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Eur J Med Chem 2014;84:284–301.
  • Röhrig UF, Majjigapu SR, Caldelari D, et al. Michielin, O. 1,2,3-triazoles as inhibitors of indoleamine 2,3-dioxygenase 2 (IDO2). Bioorg Med Chem Lett 2016;26:4330–3.
  • Jin T, Kamijo S, Yamamoto Y. Copper-catalyzed synthesis of N-unsubstituted 1,2,3-triazoles from nonactivated terminal alkynes. Eur J Org Chem 2004;2004:3789–91.
  • Arcadi A, Cacchi S, Del Rosario M, et al. Palladium catalyzed reaction of o-ethynylphenols, o-((trimethylsilyl)ethynyl)phenyl acetates, and o-alkynylphenols with unsaturated triflates or halides: a route to 2-substituted-, 2,3-disubstituted-, and 2-substituted-3-acylbenzo[b]furans. J Org Chem 1996;61:9280–8.
  • Cheng Z-y, Li W-j, He F, et al. Synthesis and biological evaluation of 4-aryl-5-cyano-2H-1,2,3-triazoles as inhibitor of HER2 tyrosine kinase. Bioorg Med Chem 2007;15:1533–8.
  • Quan X; Ren Z-h, Wang Y-y, Guan Z-h. p-toluenesulfonic acid mediated 1,3-dipolar cycloaddition of nitroolefins with NaN3 for synthesis of 4Aryl-NH-1,2,3-triazoles. Org Lett 2014;16:5728–31.
  • Panda S, Maity P, Manna D. Transition metal, azide, and oxidant-free homo- and heterocoupling of ambiphilic tosylhydrazones to the regioselective triazoles and pyrazoles. Org Lett 2017;19:1534–7.
  • Lai Q, Liu Q, He Y, et al. Triazoleimidazole (TA-IM) derivatives as ultrafast fluorescent probes for selective Ag + detection. Org Biomol Chem 2018;16:7801–5.
  • Ponpandian T, Muthusubramanian S. Tandem Knoevenagel-[3 + 2] cycloaddition-elimination reactions: one-pot synthesis of 4,5-disubstituted 1,2,3-(NH)-triazoles. Tetrahedron Lett 2012;53:59–63.
  • Boyall D, Davis C, Dodd J, et al. Compounds useful as inhibitors of indoleamine 2,3-dioxygenase. 2014; Patent WO 2014/081689.
  • Boyall D, Davis C, Dodd J, et al. Compounds useful as inhibitors of indoleamine 2,3-dioxygenase, WO/2014/081689. 2014.
  • Zoller T, Uguen D, De Clan A, Flscher J. Efficient preparation of E-β-iodovinyl phenylsulfone by Finkelstein reaction at a vinylic center. Tetrahedron Lett 1998;39:8089–92.
  • Tsai AS, Brasse M, Bergman RG, Ellman JA. Rh(III)-catalyzed oxidative coupling of unactivated alkenes via C–H activation. Org Lett 2011;13:540–2.
  • Tomé AC, Science of synthesis, 13: category 2, hetarenes and related ring systems. Stuttgart, New York, Delhi, Rio: Thieme Verlagsgruppe; 2004:415–601.
  • Liu Y-L, Xu X-H, Qing F-L. Regioselective dehydroxytrifluoromethylthiolation of allylic and propargylic alcohols with AgSCF3. Tetrahedron Lett 2019;60:953–6.
  • Koniev O, Leriche G, Nothisen M, et al. Selective irreversible chemical tagging of cysteine with 3-arylpropiolonitriles. Bioconjug Chem 2014;25:202–6.
  • Pauli L, Tannert R, Scheil R, Pfaltz A. Asymmetric hydrogenation of furans and benzofurans with iridium-pyridine-phosphinite catalysts. Chem- A Eur J 2015;21:1482–7.
  • Lanni TB, Greene KL, Kolz CN, et al. Design and synthesis of phenethyl benzo[1,4]oxazine-3-ones as potent inhibitors of PI3Kinaseγ. Bioorg Med Chem Lett 2007;17:756–60.
  • Cox RJ, Ritson DJ, Dane TA, et al. Room temperature palladium catalysed coupling of acyl chlorides with terminal alkynes. Chem Commun 2005;1037–9.
  • Shechter S, Kauffmann M, Sandanyaka VP, Shacham S, Nuclear transport modulators and uses thereof, WO/2011/109799. 2011.
  • Sun X, Hong Z, Liu M, et al. Design, synthesis, and biological activity of novel tetrahydropyrazolopyridone derivatives as FXa inhibitors with potent anticoagulant activity. Bioorg Med Chem 2017;25:2800–10.
  • Bellamy F, Ou K. Selective reduction of aromatic nitro compounds with stannous chloride in non acidic and non aqueous medium. Tetrahedron Lett 1984;25:839–42.
  • Panigrahi R, Panda S, Behera PK, et al. Recyclable bimetallic CuMoO4 nanoparticles for C–N cross-coupling reaction under mild conditions. New J Chem 2019;43:19274–8.
  • Aboelmagd A, Ali IA, Salem EM, Abdel-Razik M. Synthesis and antifungal activity of some S-mercaptotriazolobenzothiazolyl amino acid derivatives. Eur J Med Chem 2013;60:503–11.
  • Littlejohn TK, Takikawa O, Skylas D, et al. Expression and purification of recombinant human indoleamine 2,3-dioxygenase. Protein Expr Purif 2000;19:22–9.
  • Boyall D, Davis C, Dodd J, et al. Compounds useful as inhibitors of indoleamine 2,3-dioxygenase. 2015; Patent US 2015/0336903.
  • Zoete V, Schuepbach T, Bovigny C, et al. Attracting cavities for docking: replacing the rough energy landscape of the protein by a smooth attracting landscape. J Comput Chem 2016;37:437–47.
  • MacKerell AD, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998;102:3586–616.
  • Mackerell AD, Feig M, Brooks CL. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 2004;25:1400–15.
  • Haberthür U, Caflisch A. FACTS: fast analytical continuum treatment of solvation. J Comput Chem 2008;29:701–15.
  • Zoete V, Grosdidier A, Cuendet M, Michielin O. Use of the FACTS solvation model for protein-ligand docking calculations: application to EADock. J Mol Recognit 2010;23:457–61.
  • Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 2011;32:2359–68.
  • Röhrig UF, Grosdidier A, Zoete V, Michielin O. Docking to heme proteins. J Comput Chem 2009;30:2305–15.
  • Luo S, Xu K, Xiang S, et al. High-resolution structures of inhibitor complexes of human indoleamine 2,3dioxygenase 1 in a new crystal form. Acta Crystallogr Sect F Struct Biol Commun 2018;74:717–24.
  • Adamo C, Cossi M, Barone V. An accurate density functional method for the study of magnetic properties: the PBE0 model. J Mol Struct Theochem 1999;493:145–57.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 16 Revision C.01. 2016; Gaussian Inc. Wallingford CT.
  • Schäfer A, Huber C, Ahlrichs R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 1994;100:5829–35.
  • Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev 2005;105:2999–3094.
  • Cowart M, Bennani YL, Faghih R, et al. Novel amines as Histamine-3 receptor ligands and their therapeutic applications, WO/2002/074758. 2002.
  • Chao MN, Lorenzo-Ocampo MV, Szajnman SH, et al. Further insights of selenium-containing analogues of WC-9 against Trypanosoma cruzi. Bioorg Med Chem 2019;27:1350–61.
  • Zhu X, Li W, Luo X, et al. A catalyst-free and additive-free method for the synthesis of benzothiazolethiones from oiodoanilines, DMSO and potassium sulfide. Green Chem 2018;20:1970–4.
  • Naidu A, Ganapathy D, Sekar G. Copper(I)-catalyzed intramolecular Caryl-O bond-forming cyclization for the synthesis of 1,4-benzodioxines and its application in the total synthesis of sweetening isovanillins. Synthesis 2010;2010:3509–19.
  • Xie S, Li Y, Liu P, Sun P. Visible light-induced radical addition/annulation to construct phenylsulfonyl-functionalized dihydrobenzofurans involving an intramolecular 1,5-hydrogen atom transfer process. Org Lett 2020;22:8774–9.
  • Rong Z, Hu W, Dai N, Qian G. A Hg(OTf)2-catalyzed enolate umpolung reaction enables the synthesis of coumaran-3-ones and Indolin-3-ones. Org Lett 2020;22:3286–90.
  • Lee H, Torres J, Truong L, et al. Reducing agents affect inhibitory activities of compounds: results from multiple drug targets. Anal Biochem 2012;423:46–53.
  • Miller D, Bailey C, Sammelson R. Synthesis of isoxazolines and isoxazoles inspired by fipronil. Synthesis 2015;47:2791–8.
  • Li D, Liu L, Tian Y, et al. A flow strategy for the rapid, safe and scalable synthesis of N-H 1,2,3-triazoles via acetic acid mediated cycloaddition between nitroalkene and NaN3. Tetrahedron 2017;73:3959–65.
  • Kallander LS, Ryan MD, Thompson SK, Compounds and Methods, WO/2003/031434. 2003.
  • Lee H, Lee JK, Min S-J, et al. Copper(I)-catalyzed synthesis of 1,4-disubstituted 1,2,3-triazoles from azidoformates and aryl terminal alkynes. J Org Chem 2018;83:4805–11.
  • Yan S, Gao Y, Xing R, et al. An efficient synthesis of (E)-nitroalkenes catalyzed by recoverable diamino-functionalized mesostructured polymers. Tetrahedron 2008;64:6294–9.
  • Maiorana S, Pocar D, Dalla Croce P. Dalla Croce, P. Studies in the enamine field reactions of sulfonyl- and nitro-enamines with azides. Tetrahedron Lett 1966;7:6043–5.
  • Adibekian A, Martin BR, Wang C, et al. Click-generated triazole ureas as ultrapotent in vivo–active serine hydrolase inhibitors. Nat Chem Biol 2011;7:469–78.
  • Efimov I, Bakulev V, Beliaev N, et al. Reactions of β-azolylenamines with sulfonyl azides as an approach to N-unsubstituted 1,2,3-triazoles and ethene-1,2-diamines. Eur J Org Chem 2014;2014:3684–9.
  • Polo EC, Wang MF, Angnes RA, et al. Enantioselective heck arylation of acyclic alkenol aryl ethers: synthetic applications and DFT investigation of the stereoselectivity. Adv Synth Catal 2020;362:884–92.
  • Eller C, Kehr G, Daniliuc CG, et al. Facile 1,1-carboboration reactions of acetylenic thioethers. Organometallics 2013;32:384–6.
  • Al-Awadi NA, Mohamed AS, Habib OM, et al. Flash vacuum pyrolysis of acetylenic amides: a mechanistic study. J Anal Appl Pyrolysis 2020;150:104894.
  • Blass BE, Coburn K, Lee W, et al. Synthesis and evaluation of (2-phenethyl-2H-1,2,3-triazol-4yl)(phenyl)methanones as Kv1.5 channel blockers for the treatment of atrial fibrillation. Bioorg Med Chem Lett 2006;16:4629–32.
  • Yang L, Wu Y, Yang Y, et al. Catalyst-free synthesis of 4-acyl-NH-1,2,3-triazoles by water-mediated cycloaddition reactions of enaminones and tosyl azide. Beilstein J Org Chem 2018;14:2348–53.
  • Cowan DJ, Larkin AL, Zhang C, et al. Novel compounds as antagonists or inverse agonists at opioid receptors, WO/2008/021849. 2008.
  • Guirado A, López-Caracena L, López-Sánchez JI, et al. A new, high-yield synthesis of 3-aryl-1,2,4-triazoles. Tetrahedron 2016;72:8055–60.
  • Bergman J, Brynolf A, Vuorinen E. A new synthesis of 4-amino-2-quinolinones. Tetrahedron 1986;42:3689–96.
  • Aradi K, Novák Z. Copper-catalyzed oxidative ring closure of ortho cyanoanilides with hypervalent iodonium salts: arylation-ring closure approach to iminobenzoxazines. Adv Synth Catal 2015;357:371–6.
  • Yoshida M, Sakauchi N, Sato A, Iminopyridine derivatives and use thereof, WO/2009/131245. 2009.
  • Sturnio C, Deroy P, Duplessis M, et al. Inhibitors of HIV replication, WO/2010/115264. 2010.
  • O’Broin CQ, Guiry PJ. Synthesis of 2-Amino-1,3-dienes from propargyl carbonates via palladium-catalyzed carbon–nitrogen bond formation. Org Lett 2020;22:879–83.
  • Kabsch W. Acta crystallographica Section D. Biol Crystallogr. 2010;66:125–132.
  • Adams PD, Afonine PV, Bunkóczi G, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biol Crystallogr 2010;66:213–21.
  • Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr Sect D Biol Crystallogr 2010;66:486–501.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera–A visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12.
  • Takikawa O, Kuroiwa T, Yamazaki F, Kido R. Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J Biol Chem 1988;263:2041–8.