1,339
Views
4
CrossRef citations to date
0
Altmetric
Brief Report

Predicting potentially pathogenic effects of hRPE65 missense mutations: a computational strategy based on molecular dynamics simulations

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 1765-1772 | Received 05 May 2022, Accepted 10 Jun 2022, Published online: 21 Jun 2022

References

  • Liu X, Chen J, Liu Z, et al. Potential therapeutic agents against retinal diseases caused by aberrant metabolism of retinoids. Invest Ophthalmol Vis Sci 2016;57:1017–30.
  • Choi EH, Daruwalla A, Suh S, et al. Retinoids in the visual cycle: role of the retinal G protein-coupled receptor. J Lipid Res 2021;62:100040.
  • Kiser PD, Zhang J, Badiee M, et al. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision. Nat Chem Biol 2015;11:409–15.
  • Moiseyev G, Crouch RK, Goletz P, et al. Retinyl esters are the substrate for isomerohydrolase. Biochemistry 2003;42:2229–38.
  • Kiser PD. Retinal pigment epithelium 65 kDa protein (RPE65): an update. Prog Retin Eye Res 2022;88:101013.
  • Uppal S, Liu T, Poliakov E, et al. The dual roles of RPE65 S-palmitoylation in membrane association and visual cycle function. Sci Rep 2019;9:5218.
  • Poliakov E, Uppal S, Rogozin IB, et al. Evolutionary aspects and enzymology of metazoan carotenoid cleavage oxygenases. Biochim Biophys Acta – Mol Cell Biol Lipids 2020;1865:158665.
  • Kiser PD, Farquhar ER, Shi W, et al. Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Proc Natl Acad Sci USA 2012;109:E2747–56.
  • Wright CB, Chrenek MA, Feng W, et al. The Rpe65 rd12 allele exerts a semidominant negative effect on vision in mice. Invest Ophthalmol Vis Sci 2014;55:2500–15.
  • Sallum JMF, Kaur VP, Shaikh J, et al. Epidemiology of mutations in the 65-kDa Retinal Pigment Epithelium (RPE65) gene-mediated inherited retinal dystrophies: a systematic literature review. Adv Ther 2022;39:1179–98.
  • Prado DA, Acosta-Acero M, Maldonado RS. Gene therapy beyond luxturna: a new horizon of the treatment for inherited retinal disease. Curr Opin Ophthalmol 2020;31:147–54.
  • Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 2017;390:849–60.
  • Sodi A, Banfi S, Testa F, et al. RPE65-associated inherited retinal diseases: consensus recommendations for eligibility to gene therapy. Orphanet J Rare Dis 2021;16:257.
  • Camp DA, Falabella P, Ciulla TA. RPE65 mutation-associated inherited retinal disease and gene therapies. Int Ophthalmol Clin 2021;61:125–32.
  • Garafalo AV, Cideciyan AV, Héon E, et al. Progress in treating inherited retinal diseases: early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res 2020;77:100827.
  • Maguire AM, Russell S, Chung DC, et al. Durability of voretigene neparvovec for biallelic RPE65-mediated inherited retinal disease. Ophthalmology 2021;128:1460–8.
  • Fokkema IFAC, Taschner PEM, Schaafsma GCP, et al. den Dunnen JT. LOVD v.2.0: the next generation in gene variant databases. Hum Mutat 2011;32:557–63.
  • Famiglietti ML, Estreicher A, Gos A, et al. Genetic variations and diseases in UniProtKB/Swiss‐Prot: the Ins and outs of expert manual curation. Hum Mutat 2014;35:927–35.
  • Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 2016;44:D862–D868.
  • Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinforma 2016;54:1.30.1–1.30.33.
  • Kiser PD, Golczak M, Lodowski DT, et al. Crystal structure of native RPE65, the retinoid isomerase of the visual cycle. Proc Natl Acad Sci 2009;106:17325–30.
  • Fiser A, Do RKG, Šali A. Modeling of loops in protein structures. Protein Sci 2000;9:1753–73.
  • Case DA, Betz RM, Cerutti DS, et al. Amber 2016. San Francisco: University of California; 2016.
  • Hopkins CW, Le Grand S, Walker RC, Roitberg AE. Long-time-step molecular dynamics through hydrogen mass repartitioning. J Chem Theory Comput 2015;11:1864–74.
  • Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 2013;9:3084–95.
  • Galvin JA, Fishman GA, Stone EM, Koenekoop RK. Evaluation of genotype-phenotype associations in leber congenital amaurosis. Retina 2005;25:919–29.
  • Sundaresan P, Vijayalakshmi P, Thompson S, et al. Mutations that are a common cause of Leber congenital amaurosis in northern America are rare in southern India. Mol Vis 2009;15:1781–7.
  • Pasadhika S, Fishman GA, Stone EM, et al. Differential macular morphology in patients with RPE65 -, CEP290 -, GUCY2D -, and AIPL1 -related leber congenital amaurosis. Investig Opthalmology Vis Sci 2010;51:2608–14.
  • Takahashi Y, Moiseyev G, Ma J. Identification of key residues determining isomerohydrolase activity of human RPE65. J Biol Chem 2014;289:26743–51.
  • Motta F, Martin R, Porto F, et al. Pathogenicity reclassification of RPE65 missense variants related to leber congenital amaurosis and early-onset retinal dystrophy. Genes 2019;11:24.