1,175
Views
2
CrossRef citations to date
0
Altmetric
Research Papers

Dyhidro-β-agarofurans natural and synthetic as acetylcholinesterase and COX inhibitors: interaction with the peripheral anionic site (AChE-PAS), and anti-inflammatory potentials

, , , , & ORCID Icon
Pages 1845-1856 | Received 03 Mar 2022, Accepted 13 Jun 2022, Published online: 10 Jul 2022

References

  • Singh A, Raju R, Münch G. Potential anti-neuroinflammatory compounds from Australian plants –a review. Neurochem Int 2021;142:104897.
  • Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in alzheimer disease. Nat Rev Neurosci 2015;16:358–72.
  • Gandía L, Álvarez RM, Hernández-Guijo M, et al. Anticholinesterases in the treatment of Alzheimer's disease. Rev Neurol 2006;42:471–7.
  • Lane R, Potkin S, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 2006;9:101–24.
  • Kumar RS, Almansour AI, Arumugam N, et al. Highly functionalized 2-amino-4H-pyrans as potent cholinesterase inhibitors. Bioorg Chem 2018;81:134–43.
  • Lue F, Brachova L, Civin H, Rogers J. Inflammation, AB deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J. Neuropathol. Exp. Neurol 1996;55:1083–8.
  • Angiulli F, Conti E, Zoia CP, et al. Blood-based biomarkers of neuroinflammation in Alzheimer's disease: a central role for periphery? Diagnostics (Basel) 2021;11:1525.
  • Sohilait M, Pranowo H, Haryadi W. Molecular docking analysis of curcumin analogues with COX-2. Bioinformation 2017;13:356–9. ISSN 0973-2063 (online) 0973-8894 (print).
  • Weggen S, Eriksen JL, Sagi SA, et al. Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. J. Biol. Chem 2003;278:31831–7.
  • Valdés I, Cuca L, Coy E. Nectandra amazonum-derived flavonoids as COX-1 inhibitors: in vitro and docking studies. Nat Prod Commun 2014;9:649–52.
  • Karunakar P, Krishnamurthy V, Girija CR, et al. In silico docking analysis of piperine with cyclooxygenases. J. Biochem. Technol 2012;3:122–7.
  • Bazzocchi I, NuÑez M, Reyes C. Bioactive diterpenoids from Celastraceae species. Phytochem Rev 2017;16:861–81.
  • Gonzalez AG, Bazzocchi IL, Moujir L, Jimenez IA, (2000) Ethnobotanical uses of Celastraceae. Bioactive metabolites. In: Atta-ur-Rahman   (ed) Studies in natural products chemistry, vol 23. Elsevier, Amsterdam, pp 649–738
  • Gao J-M, Wu W-J, Zhang J-W, et al. The dihydro-β-agarofuran sesquiterpenoids. Nat Prod Rep 2007;24:1153–89.
  • Spivey AC, Weston M, Woodhead S. Celastraceae sesquiterpenoids: biological activity and synthesis. Chem Soc Rev 2002;31:43–59.
  • Alarcón J, Alderete J, Peter M, et al. Regio and stereoselective hydroxylation of α-agarofuran by biotransformation of Rhizopus nigricans. J Chil Chem Soc 1998;43:1–9.
  • Becerra J, Gaete L, Silva M, et al. Sesquiterpenes from seeds of Maytenus boaria. Phytochem 1987;26:3073–4. (00) 84598-7
  • Rozsa Z, Perjesi A. New sesquiterpene esters and alkaloids from Euonymus japonicus: the 'ejap' series. X-ray molecular structures of ejap-2, -3, -4, -5, -6, and -10. J Chem Soc Perkin Trans 1989;1:1079–87.
  • González AG, Nuñez MP, Ravelo AG, et al. Structural elucidation and absolute configuration of novel β-Agarofuran (epoxyeudesmene) sesquiterpenes from Maytenus magellanica (Celastraceae). J Chem Soc Perkin Trans 1992;1:1437–41.
  • Takaishi Y, Noguchi H, Murakam K, et al. Sesquiterpene esters, triptogelin A-l-A-4, from tripterygium wilfordii var. Regelii. Phytochem 1990;29:3869–73.
  • Ellman G, Courtney KD, Andres V, et al. New and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.
  • Miyazawa M, Watanabe H, Kameoka H. Inhibition of acetylcholinesterase activity by monoterpenoids with a p -menthane skeleton. J Agric Food Chem 1997;45:677–9.
  • Alarcón J, Astudillo L, Gutiérrez M. Inhibition of acetylcholinesterase activity by dihydro-β-agarofuran sesquiterpenes isolated from Chilean Celastraceae. Festschrift Fur Naturforsch. - Sect. C J. Biosci 2008;63:853–6.
  • Hussein W, Sağlık B, Levent S, et al. Synthesis and biological evaluation of new cholinesterase inhibitors for Alzheimer’s disease. Molecules 2018;23:2033.
  • Alarcón J, Cespedes C, Muñoz E, et al. Dihydroagarofuranoid sesquiterpenes as acetylcholinesterase inhibitors from Celastraceae Plants: Maytenus disticha and Euonymus japonicus. J Agric Food Chem 2015;63:10250–6.
  • Liang X, Wu L, Wang Q, et al. Function of COX-2 and prostaglandins in neurological disease. J Mol Neurosci 2007;33:94–9.
  • Choi H, Aid S, Bosetti F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci 2009;30:174–81.
  • Johansson J, Woodling N, Shi J, Andreasson K. Inflammatory cyclooxygenase activity and PGE2 signaling in models of Alzheimer’s disease. Curr Immunol Rev 2015;11:125–31.
  • Sharman MJ, Verdile G, Kirubakaran S, et al. Targeting inflammatory pathways in Alzheimer’s disease: a focus on natural products and phytomedicines. CNS Drugs 2019;33:457–80.
  • Kryger G, Silman I, Sussman JL. Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Structure 1999;7:297–307.
  • Inestrosa N, Dinamarca M, Alvarez A. Amilyd-cholinesterase interactions- implications for Alzheimer's filaments. Febs J 2008;275:625–32.
  • Cheng D, Ren H, Tang X. Huperzine A, a novel promising acetylcholinesterase inhibitor. Neuroreport 1996;8:97–101.
  • Cavalli A, Bottegoni G, Raco C, et al. A computational study of the binding of propidium to the peripheral anionic site of human acetylcholinesterase. J Med Chem 2004;47:3991–9.
  • Dawson R, Dowling M, Poretski M. Assessment of the competition between tacrine and gallamine for binding sites on acetylcholinesterase. Neurochem. Int 1991;19:125–33.
  • Iqbal M, Ahmad S, Zaheer-ul-Haq  , et al. Juliflorine: a potent natural peripheral anionic-site-binding inhibitor of acetylcholinesterase with calcium-channel blocking potential, a leading candidate for Alzheimer´s disease therapy. Biochem Biophys Res Commun 2005;332:1171–9.
  • Tang H, Ning F, Wei Y, et al. Derivatives of oxoisoaporphine alkaloids: a novel class of selective acetylcholinesterase inhibitors. Bioorg Med Chem Lett 2007;17:3765–8.
  • Bachurin S, Makhaeva G, Shevtsova E, et al. Conjugates of methylene blue with γ-carboline derivatives as new multifunctional agents for the treatment of neurodegenerative diseases. Sci Rep 2019;9:4873.
  • Islam M, Aguan K, Mitra S. Fluorescence properties and sequestration of peripheral anionic site specific ligands in bile acid hosts: effect on acetylcholinesterase inhibition activity. J Photochem Photobiol B 2016;158:192–201.
  • Lipinski CA. Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev 2016;101:34–41.
  • Dvir H, Jiang H, Wong D, et al. X-ray structures of Torpedo Californica acetylcholinesterase complexed with (+)-huperzine A and (−)-huperzine B: structural evidence for an active site rearrangement. Biochemistry 2002;41:10810–8.
  • Morris G, Goodsell D, Halliday R, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J of Comp Chem 1998;19:1639–62.
  • Zhang JZ, Chen XY, Wu YJ, et al. Identification of active compounds from Yi Nationality Herbal Formula Wosi influencing COX-2 and VCAM-1 signaling. Front Pharmacol 2020;11:568585.
  • Taylor P, Lwebuga-Mukusa J, Lappi S, et al. Propidium-a fluorescence probe for a peripheral anionic site on acetylcholinesterase. Mol Pharmacol 1974;10:703–708.