1,834
Views
1
CrossRef citations to date
0
Altmetric
Review

Inhibitors of glucosamine-6-phosphate synthase as potential antimicrobials or antidiabetics – synthesis and properties

, , , &
Pages 1928-1956 | Received 01 Apr 2022, Accepted 26 Jun 2022, Published online: 08 Jul 2022

References

  • Buse MG. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab 2006;290:E1–E8.
  • Chou KC. Molecular therapeutic target for type-2 diabetes. J Proteome Res 2004;3:1284–8.
  • Zhang H, Jia Y, Cooper JJ, et al. Common variants in glutamine: fructose-6-phosphate amidotransferase 2 (GFPT2) gene are associated with type 2 diabetes, diabetic nephropathy, and increased GFPT2 mRNA levels. J Clin Endocrinol Metab 2004;89:748–55.
  • Srinivasan V, Sandhya N, Sampathkumar R, et al. Glutamine fructose-6-phosphate amidotransferase (GFAT) gene expression and activity in patients with type 2 diabetes: inter-relationships with hyperglycaemia and oxidative stress. Clin Biochem 2007;40:952–7.
  • Oki T, Yamazaki K, Kuromitsu J, et al. cDNA cloning and mapping of a novel subtype of glutamine: fructose-6-phosphate amidotransferase (GFAT2) in human and mouse. Genomics 1999;57:227–34.
  • Dong T, Kang X, Liu Z, et al. Altered glycometabolism affects both clinical features and prognosis of triple-negative and neoadjuvant chemotherapy treated breast cancer. Tumour Biol 2016;37:8159–68.
  • Ren S, Shao Y, Zhao X, et al. Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer. Mol Cell Proteomics 2016;15:154–63.
  • Li LL, Shao MM, Peng PK, et al. High expression of GFAT1 predicts unfavorable prognosis in patients with hepatocellular carcinoma. Oncotarget 2017;8:19205–17.
  • Guillaumond F, Leca J, Olivares O, et al. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci USA 2013;110:3919–24.
  • Vasconcelos-dos-Santos A, Loponte H, Mantuano NR, et al. Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway. Oncogenesis 2017;6:e306–e306.
  • Szymura SJ, Zaemes JP, Allison DF, et al. NF-κB upregulates glutamine-fructose-6-phosphate transaminase 2 to promote migration in non-small cell lung cancer. Cell Commun Signal 2019;17:24.
  • Kim J, Lee HM, Cai F, et al. The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1-mutant lung cancer. Nat Metab 2020;2:1401–12.
  • Kertmen A, Przysiecka Ł, Coy E, et al. Emerging anticancer activity of candidal glucoseamine-6-phosphate synthase inhibitors upon nanoparticle-mediated delivery. Langmuir 2019;35:5281–93.
  • Chen W, Do KC, Saxton B, et al. Inhibition of the hexosamine biosynthesis pathway potentiates cisplatin cytotoxicity by decreasing BiP expression in non–small‐cell lung cancer cells. Mol Carcin 2019;58:1046–55.
  • Whelan WL, Ballou CE. Sporulation in d-glucosamine auxotrophs of Saccharomyces cerevisiae: meiosis with defective ascospore wall formation. J Bacteriol 1975;124:1545–57.
  • Sarvas M. Mutant of Escherichia coli K-12 defective in D-glucosamine biosynthesis. J Bacteriol 1971;105:467–71.
  • Bates CJ, Adams WR, Handschumacher RE. Control of the formation of uridine diphospho-N-acetyl-hexosamine and glycoprotein synthesis in rat liver. J Biol Chem 1966;241:1705–12.
  • Milewski S. Glucosamine-6-phosphate synthase – the multi-facets enzyme. Biochim Biophys Acta 2002;1597:173–92.
  • Zalkin H, Smith JL. Enzymes utilizing glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol 1998;72:87–144.
  • Massière F, Badet-Denisot MA. The mechanism of glutamine-dependent amidotransferases. Cell Mol Life Sci 1998;54:205–22.
  • Göpel Y, Khan MA, Görke B. Ménage à trois: post-transcriptional control of the key enzyme for cell envelope synthesis by a base-pairing small RNA, an RNase adaptor protein and a small RNA mimic. RNA Biol 2014;11:433–42.
  • Kornfeld R. Studies on L-glutamine:D-fructose-6-phosphate amidotransferase. I. Feedback inhibition by uridine diphosphate-N-acetylglucosamine. J Biol Chem 1967;242:3135–41.
  • Milewski S, Kuszczak D, Jedrzejczak R, et al. Oligomeric structure and regulation of Candida albicans glucosamine-6-phosphate synthase. J Biol Chem 1999;274:4000–8.
  • Ruegenber S, Mayr FAMC, Atanassov I, et al. Protein kinase A controls the hexosamine pathway by tuning the feedback inhibition of GFA-1. Nat Commun 2021;12:2176.
  • Teplyakov A, Obmolova G, Badet B, Badet-Denisot MA. Channeling of ammonia in glucosamine-6-phosphate synthase. J Mol Biol 2001;313:1093–102.
  • Durand P, Golinelli-Pimpaneau B, Mouilleron S, et al. Highlights of glucosamine-6P synthase catalysis. Arch Biochem Biophys 2008;474:302–17.
  • Mouilleron S, Badet-Denisot MA, Badet B, Golinelli-Pimpaneau B. Dynamics of glucosamine-6-phosphate synthase catalysis. Arch Biochem Biophys 2011;505:1–12.
  • Walker JE, Abraham EP. The structure of bacilysin and other products of Bacillus subtillis. Biochem J 1970;118:563–70.
  • Kenig M, Abraham EP. Antimicrobial activities and antagonists of bacilysin and anticapsin. J Gen Microbiol 1976;94:37–45.
  • Shah R, Neuss N, Gorman M, Boeck LD. Isolation, purification and characterization of anticapsin. J Antibiot 1970;23:613–7.
  • Borowski E, Milewski S, Chmara H. Anticapsin: an active site directed inhibitor of glucosamine-6-phosphate synthetase from Candida albicans. Drugs Exptl Clin Res 1986;12:577–83.
  • Rapp C, Jung G, Katzer W, Loeffler C. Chlorotetain from Bacillus subtilis, an antifungal dipeptide with an unusual chlorine-containing amino acid. Angew Chem 1988;27:1733–4.
  • Neuss N, Molloy BB, Shah R, DeLaHiguera N. The structure of anticapsin, a new biologically active metabolite of Streptomyces griseoplanus. Biochem J 1970;118:571–5.
  • Crossley MJ, Stamford AW. Concise, stereocontrolled synthesis of the C4 epimers of anticapsin and bacilysin: revision of the configurations of the natural products. Aust J Chem 1993;46:1443–6.
  • Souchet M, Baillargé M, Le Goffic F. A new and stereoselective synthesis of the antibiotic anticapsin. Tetrahedron Lett 1988;29:191–4.
  • Baldwin JE, Adlington RM, Mitchell MB. Stereocontrolled enantiospecific synthesis of anticapsin. Tetrahedron 1995;51:5193–206.
  • Marco-Contelles J, Molina MT, Anjum S. Naturally occurring cyclohexane epoxides: sources, biological activities, and synthesis. Chem Rev 2004;104:2857–900.
  • Kobayashi S, Shibata J, Shimada M, Ohno M. An enantioselective synthesis of the A-ring synthon for vitamin D3 metabolites by chemicoenzymatic approach. Tetrahedron Lett 1990;31:1577–80.
  • Molloy BB, Lively DH, Gale RM, et al. A new dipeptide antibiotic from Streptomyces collinus. J Antibiot 1972;25:137–40.
  • Van der Baan JL, Barnick JWFK, Bickelhaut F. Antibiotic A 19009. Structural investigation and synthesis. J Antibiot 1983;36:784–92.
  • Chmara H, Andruszkiewicz R, Borowski E. Inactivation of glucosamine-6-phosphate synthetase from Salmonella typhimurium LT 2 SL 1027 by Nβ-fumarylcarboxyamido-l-2,3-diaminopropionic acid. Biochem Biophys Res Commun 1984;120:865–72.
  • Andruszkiewicz R, Chmara H, Milewski S, Borowski E. Synthesis of N3-fumaramoyl-L-2,3-diaminopropanoic acid analogues, the irreversible inhibitors of glucosamine synthetase. Int J Pept Protein Res 1986;27:449–53.
  • Kucharczyk N, Denisot MA, Le Goffic F, Badet B. Glucosamine-6-phosphate synthase from Escherichia coli: determination of the mechanism of inactivation by N3-fumaroyl-L-2,3-diaminopropionic derivatives. Biochemistry 1990;29:3668–76.
  • Andruszkiewicz R, Milewski S, Borowski E. Amide and ester derivatives of N3-transepoxysuccinoyl-L-2,3-diaminopropanoic acid: Inhibitors of glucosamine-6-phosphate synthase. J Enzyme Inhib 1995;9:123–33.
  • Auvin S, Cochet O, Kucharczyk N, et al. Synthesis and evaluation of inhibitors for Escherichia coli glucosamine-6-phosphate synthase. Bioorg Chem 1991;19:143–51.
  • Walkowiak A, Wakieć M, Bontemps-Gracz M, Andruszkiewicz A. Glutamine analogues containing a keto function – novel inhibitors of fungal glucosamine-6- phosphate synthase. J Enzyme Inhib Med Chem 2005;20:439–47.
  • Wojciechowski M, Milewski S, Mazerski J, Borowski E. Glucosamine-6-phosphate synthase, a novel target for antifungal agents. Molecular modelling studies in drug design. Acta Biochim. Polon 2005;52:647–53.
  • Jin L, Alesi GN, Kang S. Glutaminolysis as a target for cancer therapy. Oncogene 2016;35:3619–25.
  • Andruszkiewicz R, Milewski S, Zieniawa T, Borowski E. Anticandidal properties of N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid oligopeptides. J Med Chem 1990;33:132–5.
  • Milewski S, Chmara H, Andruszkiewicz R, et al. Antifungal peptides with novel specific inhibitors of glucosamine 6-phosphate synthase. Drugs Exp Clin Res 1988;14:461–5.
  • Chmara H, Milewski S, Andruszkiewicz R, et al. Antibacterial action of dipeptides containing an inhibitor of glucosamine-6-phosphate isomerase. Microbiology 1998;144:1349–58.
  • Milewski S, Andruszkiewicz R, Kasprzak L, et al. Mechanism of action of anticandidal dipeptides containing inhibitors of glucosamine-6-phosphate synthase. Antimicrob Agents Chemother 1991;35:36–43.
  • Shahi G, Kumar M, Skwarecki AS, et al. Fluconazole resistant Candida auris clinical isolates have increased levels of cell wall chitin and increased susceptibility to a glucosamine-6-phosphate synthase inhibitor. Cell Surface 2022;8:100076.
  • Zgódka D, Milewski S, Borowski E. A diffusible analogue of N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid with antifungal activity. Microbiology 2001;147:1955–9.
  • Pawlak D, Stolarska M, Wojciechowski M, Andruszkiewicz R. Synthesis, anticandidal activity of N3-(4-methoxyfumaroyl)-(S)-2,3-diaminopropanoic amide derivatives – novel inhibitors of glucosamine-6-phosphate synthase. Eur J Med Chem 2015;90:577–82.
  • Pawlak D, Schielmann M, Wojciechowski M, Andruszkiewicz R. Synthesis and biological activity of novel ester derivatives of N3-(4-metoxyfumaroyl)-(S)-2,3-diaminopropanoic acid containing amide and keto function as inhibitors of glucosamine-6-phosphate synthase. Bioorg Med Chem. Lett 2016;26:3586–9.
  • Koszel D, Lącka I, Kozłowska-Tylingo K, Andruszkiewicz R. The synthesis and biological activity of lipophilic derivatives of bicine conjugated with N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (FMDP)—an inhibitor of glucosamine-6-phosphate synthase. J Enzyme Inhib Med Chem 2012;27:167–73.
  • Massière F, Badet-Denisot M-A, René L, Badet B. Design, Synthesis and evaluation of the first mechanism-based inhibitor of glucosamine 6-phosphate synthase. J Am Chem Soc 1997;119:5748–9.
  • Walker B, Brown MF, Lynas JF, et al. Inhibition of Escherichia coli glucosamine synthetase by novel electrophilic analogues of glutamine—comparison with 6-diazo-5-oxo-norleucine. Bioorg Med Chem Lett 2000;10:2795–8.
  • Griffiths M, Keast D, Crawford M, et al. The role of glutamine and glucose analogues in metabolic inhibition of human myeloid leukaemia in vitro. Int J Biochem 1993;25:1749–55.
  • Janiak AM, Milewski S. Mechanism of antifungal action of kanosamine. Med Mycol 2001;39:401–8.
  • Meyer zu Reckendorf W. A simple synthesis of 3-amino-3-deoxy- D-glucose (kanosamine). Angew Chem Int Ed Engl 1966;5:967.
  • Bearne SL. Active site-directed inactivation of Escherichia coli glucosamine-6-phosphate synthase. J Biol Chem 1996;271:3052–7.
  • Leriche C, Badet-Denisot MA, Badet B. Affinity labeling of Escherichia coli glucosamine-6-phosphate synthase with a fructose 6-phosphate analog: evidence for proximity between the N-terminal cysteine and the fructose-6-phosphate-binding site. Eur J Biochem 1997;245:418–22.
  • Le Camus C, Badet-Denisot MA, Badet B. Arabinose-5-phosphate oxime vs its methylenephosphonate mimetic as high energy intermediate of the glucosamine-6P synthase catalysed reaction. Tetrahedron Lett 1998;39:2571–2.
  • Badet-Denisot M-A, Leriche C, Massière F, Badet B. Nitrogen transfer in E. coli glucosamine-6P synthase. Investigations using substrate and bisubstrate analogs. Bioorg Med Chem Lett 1995;5:815–20.
  • Janiak AM, Hoffmann M, Milewska MJ, Milewski S. Hydrophobic derivatives of 2-amino-2-deoxy-D-glucitol-6-phosphate: a new type of D-glucosamine-6-phosphate synthase inhibitors with antifungal action. Bioorg Med Chem 2003;11:1653–62.
  • Milewski S, Janiak A, Wojciechowski M. Structural analogues of reactive intermediates as inhibitors of glucosamine-6-phosphate synthase and phosphoglucose isomerase. Arch Biochem Biophys 2006;450:39–49.
  • Melcer A, Łacka I, Gabriel I, et al. Rational design of N-alkyl derivatives of 2-amino-2-deoxy-d-glucitol-6P as antifungal agents. Bioorg Med Chem Lett 2007;17:6602–6.
  • Vijesh AM, Isloor AM, Telkar S, et al. Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arabian J Chem 2013;6:197–204.
  • Vijesh AM, Isloor AM, Telkar S, et al. Synthesis, characterization and antimicrobial studies of some new pyrazole incorporated imidazole derivatives. Eur J Med Chem 2011;46:3531–6.
  • Tomi IHR, Al-Daraji AHR, Abdula AM, Al-Marjani MF. Synthesis, antimicrobial and docking study of three novel 2,4,5-triarylimidazole derivatives. J Saudi Chem Soc 2016;20:509–16.
  • Ismail AH, Abdula AM, Tomi IHR, et al. Synthesis, antimicrobial evaluation and docking study of novel 3,5-disubstituted-2-isoxazoline and 1,3,5-trisubstituted-2-pyrazoline derivatives. Med Chem 2019;17:462–73.
  • Katariya KD, Vennapu DR, Shah SR. Synthesis and molecular docking study of new 1,3-oxazole clubbed pyridyl-pyrazolines as anticancer and antimicrobial agents. J Mol Struct 2021;1232:130036.
  • Bahare RS, Ganguly S, Choowongkomon K, Seetaha S. Synthesis, HIV-1 RT inhibitory, antibacterial, antifungal and binding mode studies of some novel N-substituted 5-benzylidine-2,4-thiazolidinediones. Daru 2015;23:6.
  • Omar AM, Ihmaid S, Habib E-SE, et al. The rational design, synthesis, and antimicrobial investigation of 2-amino-4-methylthiazole analogues inhibitors of GlcN-6-P synthase. Bioorg Chem 2020;99:103781.
  • Rajasekaran A, Sivakumar KK, Sureshkumar K, Manjushree M. Design, synthesis, characterisation and in-vitro antimicrobial activity of some hybridized triazole scaffolds. Futur J Pharm Sci 2017;3:1–10.
  • Aouad MR, Mayaba MM, Naqvi A, et al. Design, synthesis, in silico and in vitro antimicrobial screenings of novel 1,2,4-triazoles carrying 1,2,3-triazole scaffold with lipophilic side chain tether. Chem Cent J 2017;11:117.
  • Shyma PC, Balakrishna K, Peethambar SK, et al. Synthesis, characterization and molecular docking studies of some new 1,3,4-oxadiazolines bearing 6-methyl pyridine moiety for antimicrobial property. Eur J Med Chem 2013;68:394–404.
  • Sujith KV, Jyothi NR, Shetty P, Kalluraya B. Regioselective reaction: synthesis and pharmacological study of Mannich bases containing ibuprofen moiety. Eur J Med Chem 2009;44:3697–702.
  • Girisha KS, Kalluraya B, Narayana V, Padmashree  . Synthesis and pharmacological study of 1-acetyl/propyl-3-aryl-5-(5-chloro- 3-methyl-1-phenyl-1H-pyrazol-4-yl)-2-pyrazoline. Eur J Med Chem 2010;45:4640–4.
  • Sindhe MA, Bodke YD, Kenchappa R, et al. Synthesis of a series of novel 2,5-disubstituted-1,3,4-oxadiazole derivatives as potential antioxidant and antibacterial agents. J Chem Biol 2016;9:79–90.
  • Arrault A, Touzeau F, Guillaumet G, Merour JY. A straightforward synthesis of 1,2-dihydronaphtho[2,1-b]furans from 2- naphthols. Synthesis 1999;1999:1241–5.
  • Kenchappa R, Yadav D, Bodke D, Chandrashekar A, et al. Synthesis of some 2, 6-bis (1-coumarin-2-yl)-4-(4-substituted phenyl) pyridine derivatives as potent biological agents. Arab J Chem 2017;10:1336–44.
  • Vijesh AM, Isloor AM, Prabhu V, et al. Synthesis, characterization and anti-microbial studies of some novel 2,4-disubstituted thiazoles. Eur J Med Chem 2010;45:5460–4.
  • Venkatesh T, Bodke YD, Joy MN, et al. Synthesis of some benzofuran derivatives containing pyrimidine moiety as potent antimicrobial agents. Iran J Pharm Res 2018;17:75–86.
  • Bakr RB, Elkanzi NAA. Preparation of some novel thiazolidinones, imidazolinones, and azetidinone bearing pyridine and pyrimidine moieties with antimicrobial activity. J Heterocycl Chem 2020;57:2977–89.
  • Kenchappa R, Bodke YD, Asha B, et al. Synthesis, antimicrobial, and antioxidant activity of benzofuran barbitone and benzofuran thiobarbitone derivatives. Med Chem Res 2014;23:3065–81.
  • Kenchappa R, Bodke YD, Telkar S, et al. Synthesis, characterization, and antimicrobial activity of new benzofuran derivatives. Russ J Gen Chem 2016;86:2827–36.
  • Venkatesh T, Bodke YD, Telkar S. Synthesis, antimicrobial and antioxidant activity of chalcone derivatives containing thiobarbitone nucleus. Med Chem 2016;6:440–8.
  • Aswathanarayanappa C, Bheemappa E, Bodke YD, et al. 5-phenyl-1-benzofuran-2-yl derivatives: synthesis, antimicrobial and antioxidant activity. Med Chem Res 2013;22:78–87.
  • Kenchappa R, Bodke Y, Peethambar SK, et al. Synthesis of β-amino carbonyl derivatives of coumarin and benzofuran and evaluation of their biological activity. Med Chem Res 2013;22:4787–97.
  • Kenchappa R, Bodke YD, Telkar S, Nagaraja O. Synthesis and antimicrobial activity of fused isatin and diazepine derivatives derived from 2-acetyl benzofuran. Russ J Gen Chem 2017;87:2027–38.
  • Jose G, Kumara TH, Nagendrappa G, et al. New polyfunctional imidazo[4,5-C]pyridine motifs: synthesis, crystal studies, docking studies and antimicrobial evaluation. Eur J Med Chem 2014;77:288–97.
  • Kumar D, Harish BG, Gangwar M, et al. Synthesis, molecular docking and in vitro antimicrobial studies of new hexahydroindazole derivatives of curcumin. Lett Drug Des Discovery 2012;10:119–28.
  • Minu M, Thangadurai A, Wakode SR, et al. Synthesis, antimicrobial activity and QSAR studies of new 2,3-disubstituted-3,3a,4,5,6,7-hexahydro-2H-indazoles. Bioorg Med Chem 2009;19:2960–4.
  • Khan SA, Asiri AM, Rahman RM, et al. Multistep synthesis of fluorine-substituted pyrazolopyrimidine derivatives with higher antibacterial efficacy based on in vitro molecular docking and density functional theory. J Heterocycl Chem 2017;54:3099–107.
  • Satyendra RV, Vishnumurthy KA, Vagdevi HM, et al. Synthesis, in vitro antioxidant, anthelmintic and molecular docking studies of novel dichlorosubstituted benzoxazole-triazolo-thione derivatives. Eur J Med Chem 2011;46:3078–84.
  • Satyendra RV, Vishnumurthy KA, Vagdevi HM, et al. In vitro antimicrobial and molecular docking of dichloro substituted benzoxazole derivatives. Med Chem Res 2011;19:617–716.
  • Jayanna ND, Vagdevi HM, Dharshan JC, et al. Synthesis, antimicrobial, analgesic activity, and molecular docking studies of novel 1-(5,7-dichloro-1,3-benzoxazol-2-yl)-3-phenyl-1H- pyrazole-4-carbaldehyde derivatives. Med Chem Res 2013;22:5814–9.
  • Venkatesh T, Bodke Y, Joy MN, et al. Synthesis of some novel 5,7-disubstituted-2-phenyl-5H-[1,3,4]thiadiazolo [3,2-a]pyrimidine derivatives and evaluation of their biological activity. Lett Org Chem 2016;13:661–71.
  • Keerthi Kumar CT, Keshavayya J, Rajesh TN, et al. Synthesis, characterization and biological activity of 5-Phenyl-1,3,4-thiadiazole-2-amine incorporated azo dye derivatives. Org Chem Int 2013;2013:1–3.
  • Kumara HK, Suhas R, Suyoga Vardhan DM, et al. A correlation study of biological activity and molecular docking of Asp and Glu linked bis-hydrazones of quinazolinones. RSC Adv 2018;8:10644–53.
  • Mhaske SB, Argade NP. Concise and efficient synthesis of bioactive natural products pegamine, deoxyvasicinone, and (-)-vasicinone. J Org Chem 2001;66:9038–40.
  • Melagraki G, Afantitis A, Markopoulou OI, et al. Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts. Eur J Med Chem 2009;44:3020–6.
  • Sandhya B, Giles D, Vinod M, et al. Synthesis, pharmacological evaluation and docking studies of coumarin derivatives. Eur J Med Chem 2011;46:4649–701.
  • Kumar AS, Kanakaraju S, Prasanna B, Chandramouli GVP. Synthesis, molecular docking studies and antibacterial evaluation of Baylis-Hillman adducts of coumarin and pyran derivatives using ionic liquid under microwave irradiation. Chem Sci Tran 2013;2:561–9.
  • Helmy MM, Abdellattif MH, Eldeab HA. New methodology for synthesis of coumarin derivatives as potent antimicrobial agents. Int J Adv Pharm Biol Chem 2014;3:983–90.
  • Devi AP, Dhingra N, Bhardwaj U, et al. 2-(phenyl)-4H-chromen-4-ones: green synthesis, characterization, in vitro antifungal evaluation and molecular docking approach toward Aspergillus fumigatus. Curr Res Green Sustain Chem 2022;5:100234.
  • Elkanzi NAA, Bakr RB, Ghoneim AA. Design, synthesis, molecular modeling study and antimicrobial activity of some novel pyrano[2,3-b]pyridine and pyrrolo[2,3-b]pyrano[2.3-d]pyridine derivatives. J Heterocycl Chem 2019;56:406–16.
  • Chandra S, Jain D, Sharma AK, Sharma P. Coordination modes of a Schiff base pentadentate derivative of 4-aminoantipyrine with cobalt(II), nickel(II), and copper(II) metal ions: synthesis, spectroscopic and antimicrobial studies. Molecules 2009;14:174–90.
  • Raman N, Sobha S, Thamaraichelvan A. A novel bioactive tyramine derived Schiff base and its transition metal complexes as selective DNA binding agents. Spectrochim Acta Part A 2011;78:888–98.
  • Ebrahimipour SY, Sheikhshoaie I, Castro J, et al. Synthesis, spectral characterization, structural studies, molecular docking and antimicrobial evaluation of new dioxidouranium(VI) complexes incorporating tetradentate N2O2 Schiff base ligands. RSC Adv 2015;5:95104–17.
  • Yousef Ebrahimipour S, Sheikhshoaie I, Simpson J, et al. Antimicrobial activity of aroylhydrazone-based oxido vanadium(v) complexes: in vitro and in silico studies. New J Chem 2016;40:2401–12.
  • Yousef Ebrahimipour S, Machura B, Mohamadi M, Khaleghi M. A novel cationic cobalt(III) schiff base complex: preparation, crystal structure, hirshfeld surface analysis, antimicrobial activities and molecular docking. Microb Pathog 2017;113:160–7.
  • Onwudiwe DC, Ekennia AC, Mogwase BMS, et al. Palladium(II) and platinum(II) complexes of N-butyl-N-phenyldithiocarbamate: synthesis, characterization, biological activities and molecular docking studies. Inorgan Chim Acta 2016;450:69–80.
  • Onwudiwe DC, Ajibade PA. Synthesis and characterization of metal complexes of N-alkyl-N-phenyl dithiocarbamates. Polyhedron 2010;29:1431–6.
  • Wang H, Zhang X, Zhao Y, et al. Three Zn(II) complexes with a sexidentate N2O4-donor bis-Schiff base ligand: synthesis, characterization, DFT studies, in vitro antimicrobial evaluation and molecular docking studies. Inorg Chim Acta 2017;466:8–15.
  • Raczynska J, Olchowy J, Konariev PV, et al. The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans. J Mol Biol 2007;372:672–88.
  • Bobzin SC, Yang S, Kasten TP. Application of liquid chromatography-nuclear magnetic resonance spectroscopy to the identification of natural products. J. Chromatography B 2000;748:259–67.
  • Yu H-B, Yang F, Sun F, et al. Aaptamine derivatives with antifungal and anti-HIV-1 activities from the South China Sea sponge Aaptos aaptos. Marine Drugs 2014;12:6003–13.
  • Qian Y, Ahmad M, Chen S, et al. Discovery of 1-arylcarbonyl-6,7-dimethoxyisoquinoline derivatives as glutamine fructose-6-phosphate amidotransferase (GFAT) inhibitors. Bioorg Med Chem Lett 2011;21:6264–9.
  • Oliveira IA, Allonso D, Fernandes TVA, et al. Enzymatic and structural properties of human glutamine: fructose-6-phosphate amidotransferase 2 (hGFAT2). J Biol Chem 2021;296:100180.
  • Skarbek K, Gabriel I, Szweda P, et al. Synthesis and antimicrobial activity of 6-sulfo-6-deoxy-D-glucosamine and its derivatives. Carbohydr Res 2017;448:79–87.
  • Khan SA, Asiri AM, Al-Ghamdi NSM, et al. Microwave assisted synthesis of chalcone and its polycyclic heterocyclic analogues as promising antibacterial agents: in vitro, in silico and DFT studies. J Mol Struct 2019;1190:77–85.
  • Ebenezer O, Awolade P, Koorbanally N, Singh P. New library of pyrazole–imidazo[1,2-α]pyridine molecular conjugates: synthesis, antibacterial activity and molecular docking studies. Chem Biol Drug Des 2020;95:162–73.
  • Sarojini BK, Krishna BG, Darshanraj CG, et al. Synthesis, characterization, in vitro and molecular docking studies of new 2,5-dichloro thienyl substituted thiazole, derivatives for antimicrobial properties. Eur J Med Chem 2010;45:3490–6.
  • Narayana B, Ashalatha BV, Vijaya Raj KK, Suchetha Kumari N. Synthesis of some new 4-{2-[(Aryl)amino]-1,3-thiazol4-yl}benzene-1,2-diols as possible antibacterial and antifungal agents. Phosphorus Sulfur Silicon Relat Elem 2006;181:1381–9.
  • Krishna BG, Srojini BK, Darshanraj CG. Synthesis, characterization, molecular docking and evaluation of antibacterial, antiproliferative, and anti-inflammatory properties of new pyridinyl substituted triazole derivatives. Der Pharma Medica 2014;6:345–61.
  • Siwek A, Plech T, Stefańska J, et al. Molecular properties prediction, docking studies and antimicrobial screening of 1,3,4-thiadiazole and S-triazole derivatives. Curr Comput-Aided Drug Des 2014;10:3–14.
  • Siwek A, Wujec M, Dobosz M, Wawrzycka-Gorczyca I. Study of direction of cyclization of 1-azolil-4-aryl/alkyl-thiosemicarbazides. Heteroat Chem 2010;21:521–32.
  • Askri S, Dbeibia A, Mchiri C, Boudriga S, et al. Antimicrobial activity and in silico molecular docking studies of pentacyclic spiro[oxindole-2,3’-pyrrolidines] tethered with succinimide scaffolds. Appl Sci 2021;12:360.
  • Sowmya HBV, Kumara THS, Nagendrappa G, et al. Solvent free synthesis, crystal studies, docking studies and antibacterial properties of some novel fluorinated pyridazinone derivatives. J Mol Struct 2013;1054-1055:179–87.
  • Nagle P, Pawar Y, Sonawane A, et al. Docking simulation, synthesis and biological evaluation of novel pyridazinone containing thymol as potential antimicrobial agents. Med Chem Res 2014;23:918–26.
  • Desai JM, Shah VH. Synthesis and biological activity of cyanopyridine, isoxazole, and pyrazoline derivatives having thymol moiety. Indian J Chem Sect B: Org Chem Incl Med Chem 1996;42B:382–5.
  • Mastelic J, Jerkovic I, Blazevic I, et al. Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J Agric Food Chem 2008;56:3989–96.
  • Samar AA. An efficient synthesis and reactions of novel indolylpyridazinone derivatives with expected biological activity. Molecules 2007;12:25–42.
  • Preveena N, Nagendrappa G, Kumara THS, et al. Synthesis of (3-(2-chloroquinolin-3-yl)oxiran-2-yl)(phenyl)methanone derivatives and in vitro and in silico study of their various biological activities. Int J Pharm Sci Invent 2015;4:53–76.
  • Tabassum S, Kumara THS, Jasinski JP, et al. Synthesis, crystal structure, ABTS radical-scavenging activity, antimicrobial and docking studies of some novel quinoline derivatives. J Mol Struct 2014;1070:10–20.
  • Borse AU, Patil NL, Patil MN, et al. Microwave assisted synthesis of 1-substituted 6,7-dimethoxy-3-oxo-2,3-dihydroisoquinolines under solvent free conditions as potential antimicrobial agents and their docking study. J Pharm Res 2012;5:3223–6.
  • Skwarecki AS, Milewski S, Schielmann M, Milewska MJ. Antimicrobial molecular nanocarrier-drug conjugates. Nanomedicine 2016;12:2215–40.
  • Pham TN, Loupias P, Dassonville-Klimpt A, Sonnet P. Drug delivery systems designed to overcome antimicrobial resistance. Med Res Rev 2019; 39:2343–96.
  • Cheng AV, Wuest WM. Signed, sealed, delivered: conjugate and prodrug strategies as targeted delivery vectors for antibiotics. ACS Infect Dis 2019;5:816–28.